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Abstract 

Fano Sequential Decoding is a technique for  communicating a t  a high information 
ra te  and with a high reliability over  a large c l a s s  of channels. However, equipment 
cost  and variation in the time required to decode successive transmitted digits limit its 
use.  This  work is concerned with the latter limitation. 

Others  have shown that the average processing time per  decoded digit is smal l  if 
the information ra te  of the source is less than a ra te  Rcomp. This repor t  studies the 
probability distribution of the processing time random variable and applies the resul ts  
to the buffer overflow probability, i.e., the probability that the decoding delay forces  
incoming data to fill and overflow a finite buffer. It is shown that the overflow proba- 
bility is relatively insensitive to the buffer s torage capacity and to the computational 
speed of the decoder, but quite sensit ive to information rate .  In par t icular ,  halving the 
source  r a t e  more  than squares  the overflow probability. These sensit ivit ies a r e  found 
to be  bas ic  Sequential Decoding and a r i se  because the computation per  decoded digit is 
la rge  during an interval of high channel noise and grows exponentially with the length of 
such an interval.  

A conjecture is presented concerning the exact behavior of the overflow probability 
with information rate .  This conjecture agrees  wel l  with the (limited) experimental 
evidence available. f 
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THE COMPUTATION PROBLEM WITH SEQUENTIAL DECODING 

CHAPTER I 
INTRODUCTION 

A. BACKGROUND AND PREVIOUS WORK 

The branch of statist ical  communication theory known a s  coding theory has received much 
1 .  attention since the resul ts  of C. E.  Shannon in  1948. 

to  coding theory because of the potential for ultrareliable communication suggested by Shannon’s 
Noisy Coding Theorem. 
mission over  a noisy channel in such a way that the probability of a decoding e r r o r  is arbi t rar i ly  
smal1,provided that the information r a t e  of t he  source is l e s s  than a r a t e  called channel capacity; 
the converse to  the Noisy Coding Theorem essentially says that channel capacity is the largest  
r a t e  at which the probability of e r r o r  can be made a rb i t r a r i l y  small .  

Many investigations were and a r e  attracted 

Loosely stated, this theorem says that data can be encoded for t r ans -  

The implications of the Coding Theorem are obviously stimulating. The fact that codes ex- 

is t  for noisy channels which achieve sma l l  e r r o r  probabilities while operating at a fixed informa- 
tion r a t e  is quite surprising. -- A priori ,  one would have expected that reliability could be achieved 

only by repeating the transmitted message, that is ,  that reliability is obtainable only at the ex- 

pense of less information per unit time, i.e, a reduction in ra te .  
Although the Coding Theorem indicates the potential for ultrareliable communication, it has  

been found that this ultrareliabil i ty costs  either a great deal in equipment o r  in decoding delay. 
Both costs  a r e  exorbitant i f  the decoder operates so a s  to s t r ic t ly  minimize e r r o r  probability. 

Pract ical  considerations force one to consider less than optimum codes and decoders (in a 
probability of e r r o r  s ense ) .  
among these various coding techniques a r e  Massey’s Threshold Decoding: Gallager’s Low Den- 
s i ty  Pa r i ty  Check Codes; Bose-Chaudhuri Codes with the Peterson Decoding Procedure: I tera-  
tive Decoding:’ ‘ and Sequential Decoding7’ 

modified by R .  M. Fano. 
depending upon the performance requirements which a r e  set  and the economics of the application. 
Sequential Decoders s co re  reasonably well in both the performance and economic categories.  W e  

shal l  concentrate on Sequential Decoding, and in particular on the Fano Sequential Decoding Algo- 
ri thm, in  this report .  

A number of such codes and decoders have been invented. Included 

as f i r s t  presented by J. M. Wozencraft and l a t e r  

Each of these procedures and others9’ Io not mentioned find application 

B .  FORMULATION OF PROBLEM 

In many ways, the Fan0 algorithm is a n  attractive decoding procedure.  It applies to a large 
var ie ty  of channels in contrast  with the algebraic codes such a s  Bose-Chaudhuri codes which a r e  

best  adapted to  symmetric channels with a n  equal number of inputs and outputs (which is a power 
of a p r ime  ). The Fano algorithm is also recommended by the fact that it will operate with high 4 



, 
reliability a t  a substantial fraction of channel capacity. 
handling high-quality, high-volume traffic.  

Thus, i t  is ideally suited for  sys t ems  

The Fano algorithm, however, possesses  a t  least  two disadvantages. The f i r s t  is that the 
The second and most damaging d i s -  necessary encoding and decoding equipment is expensive. 

advantage of the Fano algorithm is that the t ime required to  process  the incoming data is var ia-  
ble and assumes ve ry  large values during intervals of high channel noise.  The variability of the 
processing time r equ i r e s  that incoming data be buffered. 
a s sumes  large values implies that occasionally and eventually a finite buffer will f i l l  and over-  
flow. After overflow, i t  is found that the decoder often performs erroneously.  Such an event 
is catastrophic unless moderated with periodic resynchronization, the use of a feedback channel, 

or some other means. 

The fact that this processing t ime 

Not only is overflow ser ious,  but it occurs  much more  frequently than do undetected decod- 
Thus, it is the controlling event in the design of the 

Although the overflow event is ser ious,  the decoder can be so designed and the infor- 
ing e r r o r s  (i.e.,  e r r o r s  without overflow). 
decoder.  
mation r a t e  be so rest r ic ted that overflows a r e  very infrequent. It is, therefore,  a problem 
which can be resolved. 

Our concern in this report  is to  obtain some understanding of the sensitivity of the overflow 
probability t o  the following: the buffer capacity, the machine speed and the information (or 
signaling) r a t e .  
analyze the machine performance and to  determine the various sensit ivit ies indirectly. 
approach t o  the overflow question has  been to  consider a random variable of computation (called 
"static" computation) which is related to  the computation performed by the machine a s  it decodes.  
We have shown that the cumulative probability distribution function PR [C > L ]  of the random 
variable of "static" computation C is an algebraic function of the distribution pa rame te r  L, 
that is ,  it behaves as L-", cy > 0,  for large L. 

a ,  w e  have found through a heurist ic argument that the probability of buffer overflow is relatively 
insensitive t o  a change in machine speed or to  the s i ze  of the buffer but that it is quite sensit ive 
to  information rate, being more  than squared by a halving of ra te .  

This  is a difficult analytical problem. As a resul t ,  we have been forced to  
Our 

From this  behavior and a study of the exponent 

The deductions on the sensit ivit ies of the overflow probability indicate that pract ical  l imits  
on the s i ze  and speed of a decoder a r e  se t  pr imari ly  by the overflow probability and that the 

machine performance is really only sensit ive to  information rate .  
fact that PR [C >, L ]  behaves a s  L-" for  large L. 

for  large L because for every transmitted codeword the re  exis ts  an interval of high channel 
noise such that "static" computation is large and growing exponentially with the length of the 
interval of high channel noise.  

with the length of the interval. 
algebraic nature of the distribution of "static" computation, P 

is fundamental to the entire concept of Sequential Decoding, it does not appear  that the buffer 
overflow problem can be avoided unless some major modification of the decoding procedure can 
be devised. 

This sensit ivity is due to the 
We shal l  find that PR [C > L ]  behaves a s  L-" 

The probability of such a noisy interval dec reases  exponentially 
It is the balance between the two exponentials which fo rces  the 

R [C >, L]. Since this  s a m e  balance 

These results and arguments a r e  explained in detail  in the following chapters .  

Chapter I1 focuses on the Fano Sequential Decoding Algorithm. The algorithm is defined, 
The buffer overflow motivated and discussed. 

problem is discussed and the random variable of "s ta t ic"  computation is defined. 
Many of i t s  propert ies  a r e  c lear ly  outlined. 

2 



. 
Chapter I11 is prefaced with a discussion of the connection between an exponential growth 

in computation with the length of an interval of high channel noise and the algebraic nature of 
the distribution of "static" computation. 
distribution of "static" computation. 
on the "completely connected" d iscre te  memoryless channel (DMC). A lower bound is also 
found for  the ( smal l )  subset of codes which have fixed composition, again for  the "completely 
connected" DMC. 

The main purpose of the chapter is to underbound the 
A general  underbound is found which applies to  a l l  codes 

Both bounds to  PR [C >, L] a r e  algebraic in  L. 

Since there  a r e  ltpoor'l codes, codes for  which PR [C >, L ]  is la rge  so that 
Chapter IV concentrates on obtaining an upper bound t o  the distribution of "static" computa- 

tion, PR [C >, L]. 
large computation occurs  with high probability, we must establish that codes exist with a 
PR [C >, L ]  which decreases  a s  an algebraic function in L. (It cannot decrease any fas te r  be- 

cause of the lower bound result .)  We show that such codes exist by averaging PR [C > L ]  over 
the ensemble of a l l  t r e e  codes. This  average is algebraic in L so that many codes exist with 

an algebraic distribution function. 

Chapter V interprets  the upper and lower bounds to PR [C >/ L ] ,  descr ibes  an experiment 
performed at Lincoln Laboratory and compares  the resu l t s  of this experiment to  the tail  be-  
havior of PR [C > L ] ,  i.e.,  i t s  behavior for l a rge  L. 

the t rue  t a i l  behavior of PR [C >, L ] .  
tion to  some fundamental resu l t s  in information theory which a r e  expressed in the Coding 
Theorem. 

the overflow probability is established and the sensitivity of the overflow probability to machine 
speed, buffer s ize  and information ra te  is brought out. 
s ea rch  a r e  a l so  suggested. 

The comparison leads to  a conjecture on 
It is shown that this conjecture has a very close connec- 

Finally, a heuris t ic  connection between the distribution of "static" computation and 

Some problems deserving fur ther  r e -  

3 



CHAPTER I1 
DESCRIPTION OF FAN0 SEQUENTIAL DECODING ALGORITHM 

2 2  I 

This chapter briefly discusses  the encoding problem and introduces the Fano Sequential 

Decoding Algorithm8 The dynamics of the algorithm a r e  described and a definition of computa- 
tion is presented. This  chapter s e rves  a s  preparation fo r  the following analytical chapters .  

102 

020 

A. TREE CODES 

Let u s  assume that the output of a source with a b-letter alphabet is encoded fo r  t ransmission 

on a discrete  memoryless channel (DMC). 
probabilities {p(y./x )} where {x,}, 14 k,< K is the channel input alphabet, and {y.}, 1 ,< j < J is 

the channel output alphabet.) Consider encoding the sou rce  by mapping a sequence of source 

digits into a sequence of channel digits. 

topologically r e sembles  a t r e e  and wi l l  henceforth be called a t r e e  (see Fig.  1). 

(The DMC is characterized by the se t  of transit ion 

J k  J 

The channel digits a r e  selected f rom an a r r a y  that 

F o r  the moment, consider mapping a finite sequence pn = (pi, b2,  . . . , Pn) of n digits drawn 

. . . , uqp) is the subsequence of P digits (o r  a t r ee  branch) drawn f r o m  the channel 
f rom the source alphabet onto a finite channel sequence fin = (gi, L+, . . . , gn), where u 

(uql, . . . , u 
input alphabet. At the qth node of the t ree ,  /3 directs a path along the bottom branch i f  pq = ai,  

= 
-9 

911’ 

9 

000 

p = (112.010.201,221.) 

13-62-3206) 

t - l  0 

20 I 

I 12  122 

010 

22 I 

000 I12 

221 E/ 
I 020 

.NODE No (3,2,2) 

-CORRECT PATH 

Fig. 1 .  Convolutional tree code. 

5 



along the second branch f rom the bottom i f  pq = a2, and along the top branch i f  p 
is a contiguous sequence of branches.) F o r  example, the channel input sequence ii 
1 2 2 )  corresponds to the source sequence CY 

alphabets a r e  both (0, 1, 2 ) .  

= ab. 9 
3 

(A path 
= (112, 010, 

= (1, 0 , 2 )  in Fig.  1 when the source and channel input -3  

The extended source sequence ?(=Pa) specifies an infinite path U(=ii,) through the t r e e .  The 
F o r  each node of the co r rec t  path, say the q , q = th path U will be called the co r rec t  path. 

0, 1, 2, . . . , where the Oth node is the origin, w e  define an "incorrect subset." The incorrect sub- 
set  a t  the qth node consists of (1) the qth node itself and (2)  all nodes (of depth greater  than q) 

diverging from the qth node, which a r e  not part  of the correct  path. F o r  example, s e e  Fig.  1 

where the incorrect subset at the 2nd node of the correct  path is shown. 

Consider the qth such We shall  find it useful to classify nodes in each incorrect subset.  
subset.  
of q t s branches). 
be mth f rom the bottom of this set  of nodes. 
This tr iplet  indicates that the particular node is mth in rank among nodes at penetration s in 

the qth incorrect subset ( s ee  Fig.  1). The qth node of the co r rec t  path ( o r  the reference node) 
is identified by the tr iplet  (1, 0, 4) .  
zero in the qth incorrect  subset.)  Denote by M(s)  the number of nodes at  penetration s in the 
qth incorrect  subset. Then, 

Consider a node "at penetration SI' in this subset (such a node is the terminus of a path 

There a r e  a number of nodes at this  penetration s. Let the node in question 
Then, it is uniquely identified by the tr iplet  (m ,  S,  q) 

(By convention, this  single node is said to  be at  penetration 

M(0) = 1 

M ( l )  = (b - 1) 

M(2) = (b - 1) b 

M ( s )  = (b - 1) bS-' for  s >/ 1 

There a r e  M(s) paths a t  penetration s in the qth incorrect  subset, and each of these paths con- 
ta ins  q + s branches. 

Given that U = (gl, . . . , u ) is transmitted,  le t  ;7 n -n n = ( y , , ~ , ,  . . . ,I,) be the received sequence, 

where v = (vql, . . . , v  
ability that Vn is received when tin is transmitted is computed f rom the transit ion probabilities 
of the DMC a s  follows: 

. , vqp)  is the qth subsequence of I channel output digits. The prob- 
-9 q71' . . 

n n I  

'R [vn/'nl = n 'R [yq/gql n n P [vqh/uqhl 
q= 1 q=1  h=1  

where p [v /u ] = p [y./x ] when v = y .  and u - qh qh J k  qh J qh - Xk' 
The data ( o r  signaling) r a t e  (in bits per  channel u s e )  is defined as 

log2 b 
R = -  . 

I ( 3 )  

If the successive source digits a r e  equally likely and statist ically independent, then R is also 
the source entropy ( o r  information r a t e )  p e r  transmitted digit.  
source digits meet these conditions. 

W e  shall  a s sume  that successive 



B. CONVOLUTIONAL CODES 

Although we shall l a t e r  assume for  analytical convenience that data a r e  encoded with an 
arbi t rary t r e e  code, we present convolutional codes h e r e  to  show that t r e e  codes may be realized 
with a minimum of equipment. 

g -= (grl ,  . . . , grP) is the rth subsequence of P digits, and S is called the code constraint length. -r 
We also define t ranslates  of g by 

Define a basic sequence = (gl, gz, . . . , g,, O, ! ,  . . . ), called the code generator, where 

n 

where 0 indicates a subsequence of 1 zeros.  Assume that the l e t t e r s  in the generator 2 and 

the l e t t e r s  of the source alphabet coincide and consist of the set  of integers (0, 1, . . . , b - 1) b 
a pr ime.  Then, the source sequence = (pi, p,, . . . ) generates the channel sequence U = 

g2, . . . ) by 

fi = Prig, . (4) 

Multiplication and vector addition a r e  taken modulo b .  

shown in Fig.  1, may be constructed f r o m  the code generator g = (112,  010, 201, 221, 000, . . . ). 
In particular,  the source sequence 
(112,010,  122,.  . . ) .  

Following this rule  the t ree ,  partially 

= (1, 0,2, . . . ) genera tes  the channel sequence U = 

DATA 

Fig. 2. Convolutional encoder. 

I- 
ENCODED DATA 

This code can be realized (see Fig.  2)  with a standard shift r eg i s t e r  of S stages (the code 
Clearly, the size of the convolutional constraint  length), multipliers? and adders (modulo b) .  

encoder does not increase f a s t e r  than l inearly in the code constraint length. 
that the probability of a decoding e r r o r  with Sequential Decoding on convolutional codes decreases  
exponentially in the code constraint length ( for  almost all codes). In a probability of e r r o r  sense, 

convolutional codes a r e  near  optimum. 

Others have shown 

t The circles in Fig. 2 indicote multiplication by the enclosed numbers. 

7 



This  example has assumed that the source alphabet and channel alphabet a r e  identical. 
Neither t h i s  restriction nor the rest r ic t ion that the alphabets contain the same  number of ele- 

ments is needed (see Ref. 11). 

example, b may be a power of a pr ime and the components of p and 
ments of a general Galois field, addition and multiplication taken in this  field. 

In addition, the constraint that b be pr ime is not essential .  F o r  
may be chosen a s  ele- 

4 

C. F A N 0  ALGORITHM 

In preparation for a discussion of the Fano search procedure, we introduce and motivate 

the "me t r i c "  with which the procedure operates.  

1. Metric 

Assume that a source generates a sequence of outputs p. This sequence d i r ec t s  a path u 
through a t r ee  code. 
channel. 
device that operates on this sequence and produces a replica of the transmitted sequence, unless 
decoding e r r o r s  occur.  

The branches of this  path a r e  transmitted over a discrete  mernoryless 
A sequence of branches V is received at the channel output. The Fano decoder is a 

The Fano decoder (o r  algorithm) is a rule  for  searching efficiently through the paths in the 
To determine a "best 

The value of a node is said to  be the value of the 
AS 

t r e e  code in an attempt to find a "best fit" with the received sequence V. 
fit," values a r e  assigned to nodes in the t r e e .  

me t r i c  between the path terminating on this node and the corresponding received sequence. 
the decoder searches nodes, values of the metr ic  a r e  compared to the c r i t e r i a  of Fig.  3 .  

c r i t e r i a  T .  = i t  
The 

a r e  straight l ines of zero slope separated by an amount t 
1 0  0' 

\ 

CORRECT PATH 
TI - 

/ -  

LENGTH 

INCORRECT PATH 
Fig. 3. Criteria and typical paths. 

Let u s  be  precise about the definition of metr ic .  We define a "branch metr ic"  and associate 
a value of this  branch metric with each branch of the tree! Let so = (uol, uoz, . . . , uop) be a t r e e  

branch and le t  xo  = (vol, voz, . . . , vop) be the corresponding received branch. The branch metr ic  

between -0 u and v -0' - - 0  d(u , -0 v ), is defined a s  

.~ ~. 

t This i s  not a metric in the mathematical sense because d_(u v ) may be negative. 
-0' -0 

8 



Here, p [voh/uoh] = p [x./xk] when voh = y .  and uoh - - xk. 
tion. 

puts a r e  assigned probabilities {p,}, 1 ,< k ,< K .  

{p,} will appear during the "random codew1 argument of Chapter IV and an interpretation wi l l  be 
attached to  f(y.)  and {p,} . 

The "path metric," d(m, s, q), on the path containing q t s branches and terminated by node 
(m, s,  q), is defined a s  the sum of the branch metric on each of the q t s branches.  

of this  path metr ic  is associated with node (m, s, 4). 

t r ee ,  we indicate the values of the path me t r i c  with nodes. 

to-one correspondence to  nodes in the t r e e  and will be  indexed with the same  triplet  (m, s, 4). 

We le t  f(voh) be a probability-like func- 

The function f(voh) and the probability assignment 

3 J 
It may be interpreted a s  the probability of channel output symbol voh when the channel in- 

J 

The value 
When we plot d(m,  s, q) for paths in the 

The nodes in this  plot have a one- 

This definition of path metr ic  is justified by two facts - it leads to  a workable decoder and 
this  decoder can be studied analytically. 
value of the path metr ic  indicates that the path in question is very probable - a poster ior i  (see 
below) which is equivalent to  saying that with high probability this  path is the transmitted path. 
We now show that the value of the metr ic  is monotone increasing in the - a poster ior i  probability 

of a path. 

The definition is recommended by the fact that a l a rge  

Let En, n = q t s, represent  the t r e e  path (m, s, q)  and let  V n be the corresponding received 
sequence. Then, the value of the me t r i c  on En is 

n P  

d(m, s, 4) & 2 2 [l(urh> Vrh) - Rl 
r=l  h = l  

where u rh, vrh a r e  the hth digits on the rth branch of Un, Vn, respectively, and 

n P  

f(vn) A n n f(vrh) ' 

r=l h = l  

In obtaining Eq. (7), we have used Eqs. (4) and (5), together with the definition of PR [Vn/Un] of 

Eq. (2) .  Now, P 

is proportional to P 

[ii /ii 1, the conditional probability that Vn is received when U n is transmitted,  
R n n  

[U /V 1, the - a poster ior i  probability of Un, since (from Baye's Rule) R n n  

and PR [fin], the _ _ _  a p r io r i  probability of Un, is constant under variation of fin. (We have assumed 
that successive source digits a r e  statistically independent and identically distributed.)  Thus, we 

have established f o r  the given source that t he  path of n branches with the largest  value of the 
me t r i c  is that path of n branches which is 2 posteriori most probable. 

t If output y occurs with probability f(y) then I(x,y) i s  the "mutual information'' between x and y. 

9 



We have attached a value of the branch metric to each of the b branches stemming f rom a 
node. 
the l a rges t  value of the branch metr ic  is the a posteriori  most probable branch at that node. 
Then, w e  order branches a t  a node according to  their  value of the branch metric and say that 
they a r e  T1most probable," "second most probable," e tc .  

W e  observe by analogy with the argument above, that of these branches, that branch with 

- 

We consider next the motivation for  and definition of the Fano algorithm. 

2. Search Procedure 

Sequential Decoding procedures in general, and the Fano algorithm in particular,  are moti- 

vated by the following consideration: F o r  a properly chosen code and for  signaling r a t e s  which 
a r e  suitably restricted,  the a poster ior i  probability of the co r rec t  path and the value of the path 
me t r i c  on i t  w i l l  typically increase ( see  Fig.  3 ) .  On the contrary,  any incorrect  path branching 

f rom the correct path will typically decrease in path metr ic  (see Fig.  3 ) .  

will typically occur between the co r rec t  path and some incorrect  path. 

a decoder can eliminate f rom consideration a l a rge  number of improbable, hence, incorrect  

paths. 
incorrect  paths w i l l  become increasingly evident. 
force a l a r g e  amount of searching and even cause decoding e r r o r s .  
points l a t e r .  

- 

Thus, a separation 
Using a set  of thresholds, 

A s  long a s  the channel l lnoisell  is not too severe,  the separation between the co r rec t  and 
A period of high channel noise, however, may 

W e  shall consider these two 

The se t  of ru l e s  f o r  searching t r e e  paths which we shall  consider h e r e  is known a s  the Fano 
Sequential Decoding Algorithm. A logical f low chart  of this  proceduret  is given in Fig.  4. To 

7 1  
1 r------------ 1 r------------ 

STEP FORWARD 

Fig. 4. Flow chart of Fano algorithm. 

. ~~ 

t See Ref.8 for the flow chart of the computer program which realizes the chart of Fig.4. The bookkeeping re- 
quired by D of Fig.4 i s  accomplished with a small number of instructions in the computer program, 
i s  based on a flow chart suggested by Professor I.M. Jacobs. 

This chart 



descr ibe the operation of this  algorithm we introduce the notions of forward mode and sea rch  

mode operations. The machine operates in the forward mode when it is searching for  the f i r s t  
t ime a path whose metric is nondecreasing. (We shall be more precise  about this  point la ter . )  
Roughly speaking, the machine operates  in the search mode when it is looking for  a path which 
has  a continuously growing metr ic .  

Let u s  now be specific. Suppose that the decoder is following a path which is growing in 

metric and that this path is being followed for the first t ime so that the machine is operating in 
the forward mode. 
running threshold T in units of to until i t  lies just  below the value of the path me t r i c  a t  each 
node. In Fig.  4 this  operation is performed by D. After  the threshold is tightened at a node, the 

decoder looks forward along the "most probable" branch (that one which has  the l a rges t  value of 

the branch metr ic) .  If the path metr ic  on the extended path remains above the existing value of 

the running threshold T, and i f  the extended path is examined for  the f i r s t  time, forward mode 

operation continues. 

begins. 

Then, a t  each node of this path the decoder r a i s e s  a threshold, called the 

If the extended path fal ls  below T, a s  in Fig.  5, s ea rch  mode operation 

Operation B of Fig.  4 is then performed. 

t 

w 
I RUNNING THRESHOLD 

Fig. 5. Typical machine search. 

When the machine en te r s  B it  is looking for  a path which will r ema in  above T.  Hence, it 
looks back to the preceding node to  determine whether it r ema ins  above T. If so, (OK) perhaps 
the "next most probable" branch extending forward f r o m  the original node will remain above T .  

At E, the machine determines whether a "next most probable" node exists,  and if not, it looks 

back again with the same  intention, that is ,  of finding an extendable path. If in looking forward 
in C the machine finds that the extended path remains above T, it s teps  forward tightening the 

running threshold i f  th is  node is visited for  the first t ime.  (This  threshold is tightened and the 

machine en te r s  o r  r ema ins  in the forward mode only when a node is examined for  the f i r s t  t ime.  
Otherwise, looping would occur.)  If the forward look in C is successful, the machine s teps  

forward and continues to  look forward, a s  indicated by Fig.  5.  

successful,  the machine again looks back in search of a node f rom which an extendable path may 
be found (i.e.,  a sequence of nodes which remains above T ) .  If an extendable path cannot be 
found, that  is, if  every sequence remaining above T and connected to the node at  which searching 
begins eventually c r o s s e s  T,  then the running threshold T must be reduced. After the threshold 
is reduced, the decoder looks forward along "most probable" branches until it reaches the node 

at  which i t  entered the s e a r c h  mode. The branch on which the decoder looks forward is a new 
branch, so that the threshold may be increased if th is  extended path l ies  above T ( see  Fig.  6) .  

If the forward look in C is un- 
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RUNNING THRESHOLD 

LENGTH 

Fig. 6. Threshold reduction, b = 2. 

3-62-3228 

0 

a b/ RUNNING THRESHOLD W 
I 

\ 6 

0 I I  1 1  I 1  - 
LENGTH 

Fig. 7. Branch examination with a threshold. 

CORRECT PATH 

LENGTH 

D' Fig. 8. Minimum threshold T 
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The machine operation may be summarized as follows: The decoder operates  in the forward 

mode, extending along "most probable 
gresses ,  until an extension fails  the running threshold T. 
begins and the decoder looks for a sequence of nodes which remains  above T .  

of nodes connected to the node at which search  mode operation began is such that i t  c r o s s e s  T 
before  forward mode operation resumes ,  then T is reduced. A s  soon as the decoder finds a 

new path remaining above the existing value of T ,  forward mode operation begins and T may 

be increased.  

branches and  increasing the running threshold as i t  pro-  
At this  point, search  mode operation 

If each sequence 

D. COMPUTATION 

We now establish that the decoder does not look forward o r  back on any given branch more  

than once with each value o f  the running threshold. There  are three  si tuations which need to  

be considered. We need to  consider the case  
where both nodes lie above a given threshold, and where either the preceding o r  following node 
lies below the given threshold. If both nodes fall below some threshold, the branch considered 

will not be examined with t h i s  threshold. 

There  is a node at each end of the given branch. 

If the node preceding the branch in question lies above the given threshold, while the follow- 

ing node l ies  below this  threshold ( see  a of Fig.  7), then the decoder may look forward on.this 
branch, but it cannot look back because it would have to  s tep forward to  do so. But f rom A of 

Fig. 4, it cannot s tep forward while this threshold is in effect. 
b in Fig. 7. 

it would have to step back to do so, which is prevented by the restr ic t ion OK in B of Fig. 4. 

thi rd situation to be considered i s  that of c in Fig. 7. 

tion l ie  above the given threshold. 
s tep forward ( A  of Fig. 4 )  f rom the preceding t o  the following node. The decoder may then search  
forward and la te r  re turn to the second node with this s a m e  threshold. We now show that the de- 

coder cannot re turn  to the f i r s t  node and then retrace this branch. We observe f rom B, E, and 
C of Fig.  4 that this branch with the given threshold cannot be re t raced  because the decoder can 
extend only along either the "next most probable" branch at the f i r s t  node, o r  along the "next 

most  probable" branch at an ear l ie r  node. 
exiting f rom B on BAD (Fig.  4) and lowering the threshold. 

par t icular  branch cannot be examined in the forward and r eve r se  directions more  than once. 
Consider paths 

branching f r o m  the qth node of the cor rec t  path and terminating on nodes labeled (m,  s, q),  

1 Let D be the cor rec t  path minimum at o r  following the qth node and 

let  TD be the threshold just below DT (see Fig.  8). Assume that the received path is decoded 
correct ly ,  that is, that decoding e r r o r s  a r e  not made. 
be examined beyond the point at which they c ross  TD. is 

used only if all  paths fa l l  below TD; but by definition the cor rec t  path remains  above TD. This  

implies  that  the decoder wi l l  not step forward to a node which l ies  below TD nor to  any node 

connected t o  and following such a node ( see  (m, s, q) of Fig.  8) .  

Next consider the situation of 
The decoder can look back on the given branch, but it cannot look forward because 

The 
Both nodes terminating the branch in ques- 

With this  threshold the decoder may look forward and then 

The decoder can only r e t r ace  the original branch by 
Thus, with any given threshold any 

Now le t  u s  consider the lowest threshold which is used by the decoder. 

m,< M ( s ) ,  0 < s - -  m . 

Then paths which c r o s s  TD will not 
This  is t rue since threshold TD - t 

0 

th -- 
t Since the decoder operation depends only on incremental values of the metric, we may assume that the q 
rect node lies between T and T and measure D and T from T = 0. 

cor- 

0 1 '  D 0 
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W e  may also deduce that i f  D < 0 and all  nodes connecting any node such a s  (ml, SI, q) in 

F ig .  8 to  (1,0, q) [including (m!, S I ,  q) ]  be above TD t to, then the decoder must look forward 
f rom ( m ' ,  SI, q) before the threshold is reduced to  TD. 

cause if D >, 0 the machine may never be forced back to (1, 0, q) so  that forward o r  backward 
looks f r o m  (m, s, q) may never occur.)  

(The constraint D < 0 is necessary be- 

The two central  r e su l t s  of the l a s t  t h ree  paragraphs may be summarized as follows: 

Consider a node (m. s, q) branching f r o m  the qth node of the co r rec t  

path. 
node. 
(m, s, q) l ies  between thresholds T and T where T >/ TD a s  in 

Fig. 9. 
this node with threshold Tk. 

Tk 4 Tn, Tn 3 Tn-l >. . . >, T 

Let D be the co r rec t  path minimum on o r  following the q th 
Let TD be the threshold just below D. Assume that node 

n t l  n n 
Let Nk be the number of forward o r  backward looks from 

Then, for  each threshold Tk >/ TD and 

2 .  . . >, TD, we have k 

O \ < N k , < b  t 1 

Nk is ze ro  for any other threshold. 

situation of the type represented by (m, s, q) in Fig.  8; in this  case,  
the machine does not look forward o r  backward from the node in 
que st ion. 

The conditions under which Nk : 0 and the bounds on Nk in Eq. (10) 

are central  to the arguments of Chapter IV, which is concerned with 
overbounding the s ta t is t ics  of the decoder behavior. 

Consider a node such a s  (ml,  SI, q) of F ig .  8 .  

above TD t t 
all of which l ie above TD t t . 
forward a t  least  once f rom this node before the threshold T is re- 
duced to TD ( to  which i t  must be reduced, since the decoded path 
is  the correct  path and this path lies below T,, t to at some point). 

The lower l imit  r ep resen t s  a 

This node r ema ins  
and is connected to (1, 0, q)  through a set  of nodes 

0 

If D \ 0,  the decoder must look 
0 

7 1  t 

- 
K CORRECT PATH 
I- 

TO 

LENGTH 

Fig. 9. Typical path trajectories. 
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The conditions under which the decoder must look forward at least  once f rom node (m!, SI, q)  

a r e  central  to  the arguments of Chapter 111, which is concerned with underbounding the s ta t is t ics  
of the behavior of the decoder.  

We shall call  the number of forward and backward looks a t  a node the "computation" at  this  
node. In the remainder  of this  

report ,  we use  this  definition of computation to investigate the computational demands of the 

decoder.  

These looks are the operations which require machine t ime.  

E. BUFFER AND DYNAMICS OF DECODER 

In the previous section, w e  assumed implicitly that the decoder is capable of searching back 
Although this  assumption wi l l  be needed fo r  indefinitely into the t r e e  in the p rocess  of decoding. 

l a t e r  analysis, it is not consistent with a physical machine. 

that all  received branches be stored in the decoder. 
of the decoder force one to  consider buffers for  storage which a r e  of finite s ize .  

s ider  now a particular buffer realization and discuss the dynamics of the decoder operation. 

To search back indefinitely r equ i r e s  
P rac t i ca l  limitations on the cost  and s ize  

W e  shal l  con- 
12 

DECODED 
DATA * 

EXTREME ' I 
I 1 LOGIC,TREE GENERATOR 

~~ ~ 

Fig. 10. Buffer. 

Assume that the decoder operates with the buffer of Fig.  10. Received branches a r e  inserted 

a t  the left end of the buffer and progress  through the buffer at the r a t e  at which they a r r i v e .  
buffer s t o r e s  B branches.  

alphabet. 
Insertions a r e  made at the position of the "search" pointer.  
the left-hand side of the safety zone they a r e  considered to  be final. 
hand side of the safety zone they are considered to have been decoded. 
the right end of the safety zone disagrees  with the corresponding source output digit, a decoding 

e r r o r  is said to have occurred. 

The 

Below each branch there is space to  regis ter  an element of the source 

As  the decoder operates, it i n se r t s  into these places tentative source digit decisions. 
When these tentative decisions reach 

When they reach the right- 

If a digit re leased f rom 

The l lsearchl l  pointer indicates the received branch a t  which the decoder is looking. The 
"extreme" pointer indicates the most recently received branch that has  been examined. As the 

machine operates  the two pointers may advance together toward the left-hand side of the buffer 

until a s ea rch  is necessary.  At that t ime the search pointer and the extreme pointer will drift  

back, the search pointer moving away f rom the extreme pointer. 
not moving forward, i t  d r i f t s  back because branches a r e  arriving at  a constant ra te . )  As the 

(When the extreme pointer is 
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sea rch  pointer moves back it e r a s e s  previous tentative decisions, and in moving forward i t  in- 
t roduces new tentative decisions. Digits in the safety zone cannot be changed. 

It h a s  been found from simulationi3 that under normal operating conditions the two pointers 
usually hover near  the left-hand side of the buffer .  Occasionally, however, they wi l l  drift  back 

a substantial distance.  

tion of the distance they have drifted from the buffer end. (This behavior is rationalized by the 
observation that the number of machine computations tends to  grow exponentially with the depth 
of the search f r o m  the extreme point.) 

During this  drift,  the two pointers usually a r e  separated by a small  frac- 

Occasionally, the search pointer r eaches  the f a r  end of the buffer.  Then, the decoder is 

likely to release an incorrect digit into the safety zone; thereaf ter ,  the decoder t r i e s  to advance 

on an incorrect t r e e  path. 

tion. 
a r e  released into the safety zone. 
buffer,  i t  will tend to remain at this end and to  decode in e r r o r .  
flow. 

noted f r o m  ~ i r n u l a t i o n ~ ~  (and may be rationalized heurist ically) that for  safety zones of moderate 
s ize ,  decoding e r r o r s  a re  almost always preceded by overflow. The heurist ic argument s ta tes ,  

in effect, that the noise sequences, which a r e  responsible for  e r r o r s  in the absence of overflow, 
occur with vanishingly small  probability, especially for safety zones of l a rge  capacity. 

Since this is difficult, the machine must do a large amount of computa- 
The  search pointer then hovers near  the f a r  end and additional erroneous source digits 

Thus, if the sea rch  pointer is forced to  the far end of the 

W e  call  this  event buffer over-  
This  report is motivated by a concern for this  event. 

Although, decoding e r r o r s  may occur without causing a l a rge  machine computation, it is 

Since buffer overflow can be detected, the decoder can discard the unreliable digits in the 

safety zone. 
buffer overflows can be made very small ,  much sma l l e r  than the probability of overflow. This 
observation is equivalent to  the statement that the probability of a machine failure,  where fail-  

u re  means overflow o r  e r r o r  is dominated by the probability of buffer overflow. Represent this 

probability by P B F ( N ) .  
on o r  before the t ime a t  which the Nth source decision en te r s  the safety zone. 

Thus, the probability that an erroneous digit is released to the u s e r  before the 

We define PBF(N)  a s  the probability that the f i rs t  buffer overflow occurs  

We shal l  be concerned in this report  with the sensitivity of P to buffer s ize  B, to the B F  

We shall  establish the mechanism 
speed of the decoder and to the data r a t e  R. 
buffer s ize  and machine speed, but quite sensitive t o  data r a t e .  
which is responsible fo r  the particular sensit ivit ies of P BF. 

decoder is working with a fixed channel. 

A preliminary statement can be made he re  concerning the l a rges t  signaling r a t e  R at  which 

PBF is "small" o r  at which the decoder will function well. Others  7 J 8 '  I 3 l i 4  have shown, through 
analysis and simulation, that the l a rges t  r a t e  a t  which the average computation per  decoded digit 
is small  is a rate called RcOmp. Since l a rge  average computation implies frequent buffer over- 

flows, Rcomp is a n  upper l imit  on the r a t e  a t  which the machine will function properly.  
is strictly less than channel capacity, except f o r  pathological channels, and is a l a rge  fraction 
of channel capacity for many but not all  channels. 

We shall  find that PBF is relatively insensitive to  

Throughout, we a s sume  that the 

Rcomp 

F. "STATIC" COMPUTATION 

Unfortunately, the s ta t is t ics  of the dynamical computation pe r fo rmed  by the Fano decoder 

a s  it operates  in t ime a r e  too difficult to  study directly through analysis.  Consequently, we a r e  

16 



led to  consider a kind of computation called "static" computation which is at  once analytically 

tractable and closely connected to  the r ea l  machine computation. Through an investigation of 
l lstaticll  Computation, we shall  be able to make strong qualitative statements about the sensi-  

tivities of P 

by all  others  who have investigated the Fano a l g ~ r i t h m ! ~ - ' ~  By I'staticf1 computation we mean 
a computation which is eventually performed by the decoder, if  no digits a r e  decoded in e r r o r  

and if the buffer is infinite. Thus, the assumptions are that the decoder has  a buffer of infinite 

capacity, that it has  operated for  an indefinite length of t ime, and that it has  decoded correct ly .  

BF' 
A restr ic t ion to  the study of "static" computation has  been found necessary  without exception 

Let (m, s, q) be a node of the qth incorrect subset where 1 ,< m <  M ( s ) ,  0 ,< s < a, and M ( s )  
is given by 

M(0)  = 1 

M(s )  = (b - 1) bS-' , for s> , i  . [Eq. (1) 1 
We define "static" computation associated with the qth co r rec t  node as the number of computa- 
tions made on each node (m, s, q)  of the qth incorrect subset.  

The connection between "static" computation and the probability of overflow wi l l  be made 

la te r .  
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CHAPTER I11 
LOWER BOUND TO DISTRIBUTION OF COMPUTATION 

In this  chapter, we underbound the cumulative probability distribution of the random variable 
of llstaticll computation C, namely, PR [C 2 L]. 

less channels (DMC) which are completely connected (all channel transit ion probabilities are 

s t r ic t ly  positive). 
pa rame te r  L for  large L; that is, PR [ C  >, L] >, (A/La) for  all L g rea t e r  than some constant 

Lo, where A, (Y > 0. 

able of "static" computation which is responsible for i t s  having an algebraic distribution function. 

Roughly speaking, this  condition s ta tes  that the distribution is algebraic if  "static" computation 
is l a rge  during an interval of high channel noise and grows exponentially with the length of such 

an interval. 
probability mentioned in Chapter 11. 

This underbound applies t o  discrete,  memory- 

We show that this  lower bound is a n  algebraic function of the distribution 

The lower bound derivation is preceded by a discussion of the condition on the random vari-  

This  important result  is responsible for the par t icular  sensit ivit ies of the overflow 

A. BEHAVIOR OF DISTRIBUTION OF COMPUTATION 

The computation performed by the Fano decoder is a random variable.  It is large during 

periods of high channel noise and small  otherwise. 

' 'static" computation C associated with the qth node of the co r rec t  path. 

what loosely that exponential growth of "static" computation implies that it has  an algebraic dis- 
tribution function. 

the qth co r rec t  node. The sequence T s  alone is not sufficient, as a rule, t o  determine C com- 
pletely. 
If for  l a r g e  s r ep resen t s  a long interval of high channel noise, then C will  still be random, 
but a l l  values in its range of values will be very large.  

each s > s t h e r e  exists a cs such that C >AoZSe where Ao, 8 > 0, that is, the "static1' compu- 
tation grows exponentially with the length of an interval of high channel noise. (Following argu- 

ments  similar t o  those of the next section, it may be  verified that such an assumption holds for  

all codes on the completely connected DMC.) 

The same  is t r u e  of the random variable of 
We now argue some- 

Let F be the sequence of s P  channel transitions (corresponding t o  s t r e e  branches) following 
S 

Knowledge of 5, is sufficient, however, t o  determine whether C is large o r  not. 

In particular,  le t  u s  assume that f o r  
S 

0 

where PR [is] is the probability that the particular sequence r s  of s P  channel transit ions is the 
sequence of s i  transit ions following the qth reference node. Both c, and s in Eq. (10) a r e  arbi-  

t r a r y .  F o r  each s let F s  be a high channel noise sequence. Now choose s such that 

Then, fo r  this  s and the high channel noise sequence is we have by assumption that C > AoZSe. 
Therefore ,  f rom Eq. (Ii), C > L which implies that PR [C 2 LIFs] = 1. 

value of s defined by Eq. (11) and f o r  the high channel noise sequence 5 ,  of that length, we have 

Thus, for the par t icular  

PR [C > L] >/PR [is] . (12)  



F o r  the completely connected DMC (the only channels considered in this  chapter) we have 

where cp 

bili t ies a l l  of which exceed the smallest  transit ion probability, the l a t t e r  being nonzero by the 

connectedness assumption. Combining Eqs.  (11) and (13) we have the following lower bound t o  

PR [ C >, L]. . 

-P logz min p [yj/ykl because PR [c,] is the product of SP channel transit ion proba- 
j, k 

SO@ The bound applies only for  s > so o r  L >, AoZ 

Exponential growth of computation with the length of an interval of high channel noise implies 
that the distribution of "staticT1 computation is algebraic, which in turn implies the par t icular  

sensit ivit ies of the overflow probability discussed in Chapter 11. The existence of exponential 

growth is, therefore, a most important character is t ic  ( o r  defect) of a decoding scheme. 

B. LOWER BOUND ARGUMENT 

Our intention in this  section i s  t o  underbound, without a loss of rigor,  the probability 

PR [ C  >, L]. 
bility of the former event underbounds the probability that C > L and is used a s  the underbound 

to  PR [C >, L]. A s  a preliminary,  we r eca l l  some of the definitions and statements of Chapter 11. 

"Static" computation associated with the qth incorrect  subset is defined as the number of 

forward o r  backward "looks" required by the Fano decoder on the reference node (the qth co r rec t  
node) o r  on nodes in the qth incorrect  subset.  
sumption that the decoder decodes without e r r o r ,  that the qth co r rec t  node is in the infinite past  
of the decoding process,  and that the buffer has infinite s torage capacity. 
is equivalent to the assumption that the machine can sea rch  forward o r  backward t o  any length 
in the t ree .  

A node in the qth incorrect  subset is labeled (m,  s, q )  to  indicate that it is at penetration s 

in this  subset ( there a r e  s branches between it and the reference node) and it is mth in o r d e r  
among the M ( s )  nodes at  that penetration in the qth incorrect  subset; M(s )  is given below. 

To underbound PR [C >, L], we find an event which implies that C >, L. The proba- 

"Static" computation is measured under the as- 

The la t ter  assumption 

M(0) = I 

M ( s )  = ( b  - 1) bS-' for  s > , I  . 
t The re  are b nodes at  penetration t o r  less ,  since 

t 
M ( s ) = ~  t ( b - 1 )  t ( b - 1 ) b t  . . .  t ( b - 1 ) b  t - l  

s=o  

1 t ( b - l ) ( l  t b t b ' t  . . .  t b t - ' )  

[Eq. ( I ) ]  

The reference node is labeled (1, 0, q )  and is said t o  be a t  penetration z e r o  in the qth incorrect  

subset.  
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A path me t r i c  is defined and the value of the path me t r i c  on a path terminated by node 
Let Un represent  the path of (m, s, q) is associated with node (m,  s, q) and is called d(m, s, 4). 

n = q t s branches terminated by (m,  s, q)  and le t  V be the corresponding portion of the received 

sequence? Then, d(m, s, q)  is defined a s  
n 

n P  

d(m, S, 4) 6 [I(Urh’ Vrh) - Rl [Eq. ( 7 ) ]  

r=l h = l  

where 

and u rh’ vrh are the hth of P digits on the rth branches of En, respectively.  p [vrh/urh] is a 

channel transit ion probability and f(vrh) is a probability-like function which is interpreted a s  
the probability of the channel output digit vrh when channel inputs a r e  assigned probabilities 

{pk>, 1 < k <  K. 
A s  the Fano decoder operates,  it at tempts to extend along a path which increases  in path 

me t r i c .  
amined grows o r  dec reases  in metr ic .  

path metr ic .  
Ti =to ,  i.e., O <  d(1, O , q ) <  to. 

this  event. 
r e c t  path me t r i c  a t  o r  following (1, 0, q), and TD is the threshold just below D, then a t  least  one 
computation ( a  forward look) is required on node (m, s, q )  and on each node connecting it t o  
(1, 0, q) if D < 0, and node (m, s, q)  and all nodes connecting it t o  (1, 0, q) lie above T D  t to. 

conditions before the decoder reduces the running threshold from T D  -t to to  TD. This  la t ter  

threshold is used at  least  once since the decoded path is the co r rec t  path (by  assumption)-and 
this  path dips below T D  t t o  ( s e e  Fig. 11). 

by some  node (m, t ,  q)  cannot fall from the value of the metr ic  on the reference node, d(1, 0, q), 

A set of threshold Ti = i to, -- < i < *, is used t o  ascertain whether a path being ex- 
The decoder operation depends on increments in the 

Thus, we may a s sume  that the reference node (1, 0, q) lies between To = 0 and 

Our intent is to  find an event which implies that C > L and t o  underbound the probability of 
It was observed in Chapter I1 that i f  D is defined as the minimum value of the cor-  

One forward look on node (m,  s, q) and each of the connecting nodes is required under these 

We as sume  that the channel is completely connected. This implies that the path terminated 

with a slopex of magnitude l a rge r  than P(R - Imin) where 5 

That is, 

t The subscript n on U or v i s  reserved for sequences of n branches measured from the origin. 
on U or V will indicate sequences of s branches measured from the qth correct node. 

$ Slope i s  defined as the increment in the metric for a one-node change in path penetration. 

5 I t  may be shown that I 

The subscript s 

< 0. min 
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Fig. 11. Trajectories of correct path and incorrect path. 

We a r e  now prepared t o  descr ibe an event which implies C >, L. A s  shown by Eq. (15),  
t t there  a r e  b nodes at penetration t o r  l e s s  in the qth incorrect subset. If each of these b nodes, 

b >, L > bt-', lies above some threshold T . ,  and if  the co r rec t  path fal ls  below T i  a t  some node 

beyond (1, 0, q), say  at  node (1, 0, q t s )  [which is s branches removed from (1, 0, q)], w e  find 

that the "static" computation on just the b nodes of the incorrect  subset equals o r  exceeds L 

(s ince t is defined by b > L > bt-') so  that the tota1"static" computation C equals o r  exceeds L. 

We have the desired underbound if we let T .  be the threshold below the value of the path 

t 
1 

t 
t 

me t r i c  on the path (m, t,  q) which fal ls  at the maximum rate .  In particular,  we have that 

d( 1, 0, 9) - tP (R  - Imin) >, Ti > d(1, 0, 4) - t l  (R  - Imin) - to . (18) 

If the co r rec t  path falls  below this underbound to  T. ,  then threshold T i  is used and at  least  
b , b >, L > bt-' 9 -  nodes in the qth incorrect subset will have at  least  b computations done 
on them. 

bounds PR [ C >, L]. 

than the underbound to  T . ,  this  threshold will be used. 

t 1 t t  

Therefore, the probability that the co r rec t  path fal ls  below the T i  of Eq. ( 1 8 )  under- 

If d(1, 0, q t s )  is less The metric on the ( q  + s)th co r rec t  node is defined a s  d(1, 0, q t s ) .  

This condition is written a s  
1 

d(1, 0, q t S )  < d(1, 0, 4) - tP ( R  - Imin) - to . ( 1 9 )  

If we let  Us represent the s branches of the co r rec t  path which follow node (I, 0 ,  q) and le t  vs 
be  the corresponding section of the received sequence, we have f rom Eqs.  ( 6 )  and (7 )  

r=l h = l  

d(1, 0, q t s) - d(1, 0, q)  2 I(Us, Ts) - s P  R ( 2 1  

vrh are the hth digits on the rth branches of lis, Vs, respectively.  Equation (19) is rh' where u 
now rewrit ten with the aid of Eq. (21). 

I(U , V ) < SP R - t l  ( R  - Imin) - to  . (22 s s  
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Recalling that bt > L > bt-' and remembering that R 4 (log2 b)/k', we obtain the final resul t ,  

namely, if  

then the static computation C must exceed L.  Therefore, the probability of the event in Eq. (23) 

underbounds PR [ C  >, L]. It is chosen t o  maximize the underbound 

to  PR [C >, L]. 

We note that s is arbitrary.  

The desired resul t  then is 

P [ C > L ] > / m a x  P R [ I ( B s , " , l ~ s l R - t o - ( l o g 2 L t 1 )  ( R - I  Rmln)] . . 
S 

R 

It should be noted that the random variable I(Us, Vs) is assigned with probability PR [Us, Vs], 
which is the probability that the first s branches of the transmitted and received sequences fol- 

lowing the qth co r rec t  node a r e  EiS,Vs, respectively. The inequality of Eq. (24) applies t o  any 
particular code and Us is a codeword (of s branches) i n  this  code. 

Let ps(x) 4 PR [I(ns, Vs) < X I .  Then, the lower bound result  is formally summarized below. 

Theorem 1. 

The "static" computation in the qth incorrect  subset, when the Fano algorithm is used on 
the completely connected DMC, has  the following bound on i t s  cumulative probability distribution: 

P [C >, L] >/ max p ,  
S 

R 

where Imin is defined by Eq. (16) .  

Next we fur ther  lower bound Eq. (25 )  s o  that the dependence of the bound on L and R be- 

comes explicit. F i r s t ,  we lower bound p (x) in t e rms  of the smallest  value of the conditional 
probability ps(x I nS), defined a s  the conditional probability that I(Gs, Vs) < x given ii . 

S 

S 

Here  the minimum is taken over all words of SP digits, not just words in the code. 
is independent of code, we shal l  u se  it t o  obtain a bound valid for  a l l  codes. 
Eq. (27) under certain conditions on the channel and the probability-like function f(y.1. 

is equivalent t o  saying that p (x)  is independent of the code. 

Since Eq. (27) 
Equality holds in 

Equality 
J 

The conditions are:  
S 

(a) The channel is uniform at the input, Le., the set  of transit ion proba- 
bilities {p(y./x )}, 1 < j < J i s  independent of k; 

f(yj)  = constant for  a l l  1 < j <  J. 
J k  

(b)  

In the second major  step directed at  exhibiting the dependence of the bound on L and R, we 
introduce and apply a theorem due to Gallager.17 We shal l  u se  it t o  underbound p ( x i 6  1. 
though it is a weaker theorem than the Central Limit Theorem for  Large Deviations (Ref. 181, 

Al-  s s  

2 3  



it  i s  sufficient t o  demonstrate the dependencies of P 

theorems are asymptotically equal. 

Theorem 2. (Gallager) 

[C >/ L] for large L because the two R 

Let {ti}, 1 < i < N be a se t  of statistically independent random variables .  assumes the t i  
J values w::, 1 ,< j < J, with probabilities {pR(w. .I}. Let [ be the sum of these N variables, 

'J N lJ 

5 = C 5 .. Define pi(u) by? 
i=l ' 

Then, 

N 

and for  u,< 0 we have 

where the prime indicates differentiation with respect  to u, and p is defined by min 

p . 4 min PR [min w. . ]  . (31) 
j 'J min - i 

To use  this theorem in underbounding p (xlU ), we must  associate the N random variables  s s  
{ t  i} with the random variables  appearing in the definition of ps(xIUs). We reca l l  that 

ps(xIUs) = PR [ I ( U S , V S ) \ <  xlOsI 

where If is ,Vs)  i s  defined f rom Eqs. (20) and (21)  as 

and urh' v 
this random variable I(Es, O s )  is assigned with probability 

are  the hth of P digits on the rth branches of Us, Vs, respectively. With ifs fixed, rh  

- 
tThe bar notation indicates a statistical average. 



a r e  therefore statist ically independent and assigned with probabilities p [vrh/urh]. 
make the following indentifications, Theorem 2 applies to  ps(x IUS): 

Thus, if  we 

N &  SI 

i =  A ( r - i ) P  t h  

pR lWij1 A = P [Yj/urhl 

p'(a) A = x . (34) 

The par t icular  definition of the index i is one which leads to  a natural  ordering of the SI  p a i r s  

Before we apply Theorem 2 to  p (xlUs) we observe that by decreasing pmin we fur ther  
(Urh' Vrh)' 

S 
weaken the inequality of Eq. ( 3 0 ) .  Therefore,  we may replace pmin with Pmin, 

P . min p [y./x J . (35) 
J k  j, k 

m in 

Now let us  consider the fo rm of pi(o) and of ~ ( a ) .  From the definitions of Eq. ( 3 4 )  we have 

J 

If we define 9, = (ql ,  . . . , qk) as the composition of codeword ii 

number of times channel input symbol xk appears in ii 
following : 

that is ,  if Nq r ep resen t s  the k K " 
C 

k = l  
qk = 1, then we have for  p(u) the 

S' 

i=l k = l  

where 

A l l  t e r m s  of Theorem 2 have been defined so that we may now state  the desired lower bound t o  

pS(xltis). If Us has composition Q then, 
-0' 
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This  bound is independent of the o rde r  of symbols in the codeword. Therefore ,  for  that (unusual) 

class of codes having all codewords of the same  composition, this lower bound applies direct ly  

to  all words U 

applies t o  p ( x l U  ) as well as t o  i ts  lower bound: it can be shown that ps(xlUb) = p s ( x l i i s )  when 
u' and ii have the same composition. 

necessary  for codes of fixed and known composition; for  this c lass  of codes we may wri te  

in the code. Moreover, independence of the order  of symbols in a codeword 
S 

S - It follows that the inequality of Eq. (27) is weaker than 
S S 

ps(x) = P S ( X l U S )  (40) 

It should be noted again that Eq. (40) applies only to  codes of fixed com- for  any Us in the code. 
position, whereas Eq. (27) applies to  all codes. 

Our pr imary  task is t o  exhibit the dependence of the bound of Theorem 1 on L and R. We 

now have the necessary tools to do this .  We use  ei ther  Eq. (40) o r  Eq. (27), depending on whether 
the bound is to apply t o  a code of fixed composition or is to  apply t o  all codes, together with the 
bound of Eq. (39)  and the inequality of Eq. (25)  of Theorem 1. 

tion case  f i rs t  since i t  s e rves  as an introduction to the general  lower bound. 
We shall  consider the fixed composi- 

F o r  fixed go, we have f rom Theorem 1, the definition of Eq. (34), the equivalence of the s ta te-  
ment in  Eq. (40), Theorem 2 and the bound of Eq. (39) the following lower bound to PR [C >, L]: 

PR [ C  >, L] >/ max ps(x) >, max 
N N 

where 

F & to t (log2 L t 1) ( - imin  

N A s s P  . 
The maximization over  N in Eq. (41) is taken subject t o  the following constraint 

K 
F qkyk(u) = R - - N 

k=l 

o r  

F 
N =  K (43) 

which is implied by the f i r s t  equation in Eq. (42), the las t  equation in Eq. (34)  and the definition 
of ~(a), Eq. (37) .  The  function F is independent of Q 

the maximization. 
and N, and is constant with respec t  to  

-0 
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Strictly speaking, the maximization on N must be taken only for  values of N which are 
multiples of I ,  the number of digits pe r  t r e e  branch. We now drop this constraint and permit  N 

t o  a s sume  a l l  values 1 \< N < m .  The imprecision introduced neither affects the character  of the 

end resul t  nor  mater ia l ly  a l t e r s  its numerical  value. 
Let us  now consider the connection between N and u f rom the second equation in Eq. (43). 

One can show that 

where 5 ! assumes  the same  values a s  does 5 of Eq. (34) but it is assigned each such value with 

the probability 

when urh = xk. Consequently, yk (u )  is monotone increasing in u, which implies that N is mono- 
tone increasing in u. Since 0 ,< N < 00, we must res t r ic t  u in Eq. (43) to  be less than the value at 
which N is infinite. 
l / [ R  - C q y '  (a)]  so that it is infinite for u larger than the cr i t ical  value. 

next paragraph, it will become c l e a r  that this extension does not affect the maximization, s e rv -  

ing only to  simplify the analysis.  

We shal l  impose this restriction implicitly by extending the definition of 
At the end of the k k  

We re tu rn  now to the maximization of Eq. (37) .  If h(N) and q(N) a r e  positive, then 

max h(N) q(N) >, [max h(N)] q(N') (46) 
N N 

where N' may a s sume  any value. 
the two factors ,  we fu r the r  lower bound PR [ C  >L]. 

a t  the maximum of the exponent 

Thus, if  we maximize Eq. (41) with respect  to  the f i r s t  of 
The maximum of the f i rs t  factor occurs  

Let u s  study this  exponent. 

E ( U )  a s s u m e s  value ze ro  at u = 0 and has  derivative 

u of interest .  
derivative with respect  t o  u. 

It is negative since ~ ( u )  is negative. W e  see this  by observing that 
K 

k= 1 
q (-u) y " ( u )  >/ 0 fo r  u \< 0, the range of k k 

To  determine whether the exponent NE(u) h a s  a maximum in u, we take the first 

K 

.. - 
c K 12 
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K 
C qk [yk(u)]/a.  

K k = l  
A l l  f ac to r s  are positive f o r  u \< 0, with the possible exception of the t e r m  R - 

Since C qk [yk(u) ] /u  has derivative 
k = l  

K 
C 

k = l  
we find that R - 

that 

qk [yk(u)] /u  is positive for  a\< u and negative for  u >, u where uo is such 0 0 

We can now sketch N E ( u ) / F  for a\< 0 ( s e e  Fig. 12).  

at u = u 
It is negative for  u,< 0 and has  a maximum 

The value of this  maximum is 
0' 

i.e., the maximum ( a  

u < u R > 
0' 

line passing through the origin for  a\< uo. 

u ) l ies  on a straight line of slope one passing through the origin. For 
0' 0 K 

k=l  
qk [ y k ( u o ) / ~ o ]  SO that N E ( u ) / F  >, u, that is, N c ( u ) / F  l ies  above the unit slope 

Maximizing NE(u)  over  N i s  equivalent to maximiz- 
ing this  exponent over  u where N and u a r e  related by Eq. ( 4 3 ) .  Therefore,  the maximum of 

u F  
the f i r s t  t e r m  in Eq. (421 ,  2 , is related parametrically t o  the r a t e  R by Eq. ( 5 0 ) .  

The final bound is obtained if in the second factor of Eq. ( 4 1 )  we use N '  = N(uo), the value 

Then using Eq. ( 4 6 )  we have for the fixed composition of N which maximizes the f i r s t  factor.  
ca se  

t 
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where u < 0 is such that 
0 

The range -1 < u < 0 suffices since, as shown in Eq. (49), the  sum in Eq. (50) is monotone in- 

creasing in u, being negative for  u < -1. 
tion case. 
many of the resu l t s  obtained above. 

0 

This is the lower bound resu l t  for  the fixed composi- 
We must  now consider the general  lower bound, valid for  all codes. We shal l  use  

To obtain the general  lower bound, we lower bound P [ C  2 L] using Theorem 1 and in- R 
equalities ( 2 7 )  and (39) .  

where u,< 0. 

our  doing this  as follows: 

W e  would like to  focus attention on the f i r s t  of the two fac tors  above. We justify 

Let h(N, 9,). g(N, go) > 0.. Then, 

s o  that 

and 

max  min {h(N,Qo) g(N,€&,)} 2 max rnin {h(N,qO)} min {g(N',Qo)} . 
N Qo N go Q O  

(54) 

In the last s tep  we have used Eq. (46). Thus, if we minimize the second t e r m  in Eq. (53) on Q 
and use  in it the value of u which achieves the  max-min of the first t e r m  we will have a valid 

lower bound. 

-0 

We minimize the second factor  Q, if we maximize N' on Qo. 

F 
R - max yk(u)  . a) max N'(u) = Nmax( - 

QO k 

Then, we have 

max min NE( u) 

R 

(55) 

Our next concern is with the max-min of NE(u) .  W e  a s s e r t  that  the minimum on go (the 

components of 9, a r e  positive and sum to one) of NE(u) occurs  when 4, has  a single nonzero 
component, having the value unity. This  component q = 1 is such that fixed a <  0 

k0 
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0 3  

u z  - 91- Fig. 13. Minimization of Ne(o)/(F) over go. 
.: 0"l 

Fig. 14. Relative values of yk(o)/o. 
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This asser t ion is proved a s  follows: 
a rb i t r a ry  Qo and the value of NE(u)/F at  the supposed minimum on q0. 

Let 6 be defined as the difference between N E ( u ) / F  for  

Then we have 

K 
0 

K 
C qkyk(u) cannot be 

k = l  
Using Eq. (57)  and remembering that by extension of its definition R - 

negative for  any Q 

Thus, this  composition achieves the minimum. 

each k and all values of u < 0 (keeping in mind that R - y;C(u) >, 0 by extension of its definition) 
we see that we achieve the minimum NE(u) on go by taking the lower envelope of these functions 
(see Fig. 13).  

unit slope passing through the origin. The maximum of the kth function occur s  a t  u = uk where 
uk is such that R = yk(u)/uk. F o r  u S uk' the kth function l ies  above the unit slope straight l ine 

passing through the origin. 
We now con- 

we see that 6 >, 0. We also observe that 6 = 0 fo r  the assumed composition. 

Now if we sketch [yk(u) - uyk(u) ] / [R - yk(u)] f o r  
- 0' 

Notice that the maxima of the individual functions occur on the straight line of 

Figure 13  provides a graphical interpretation of the function min N d u )  v s  u. 
Q-0 

centrate  on maximizing this  minimum on N or, equivalently, on u < 0. 

imum occurs  in Fig. 1 3  on the straight line of unit slope. 
If uk is such that R = yk(uk)/uk, that is ,  if {a } are  the loci of the maxima, we fur ther  assert 
that the maximum over u of min NE(u) occu r s  for u equal to  the smallest  of the uk. This  too 

should be c l ea r  f rom the figure. 

We a s s e r t  that this  max- 
This should be  c l ea r  f r o m  the figure. 

k 

Q-0 

We have 
the functions 

the maxima. 

found that the max-min of the exponent Nc(a) occurs  a t  the maximum uk of one of 

[yk(u) - uyk(u)]/R - y&(u ) ,  and that this  par t icular  maximum is the smallest  
At the particular maximum w e  have 

max min NE(u)  = u F 
0 

N 9, 
where u is the smallest  of the {uk} satisfying R = yk(uk)/uk. Since yk(u)/u is monotone 

creasing in u from Eq. (55), we see f r o m  Fig. 14 that  the smallest  uk' as a function of R 
solution t o  the equation: 

0 

of 

(59) 

in- 
is the 

( 6 0 )  

If we now choose u = uo in Nmax(u), the value of N' in the exponent of the second factor of Eq. (56), 

we have 

F 

max - - max yi<(uo) 

Nmax(uo) = Yk(O0) 

k '  0 k 
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The denominator is positive because y (u)/u > y' (a) a s  implied by the fact  that y (a) - a y k ( a )  = 

€(a) < 0 ,  for a < 0.  
k k k 

The complete general  lower bound to  PR [ C  > L], valid for  a l l  codes, can now be stated. 

where a is the solution to  the equation 
0 

yk(uo) 
R = max - 

k a  0 
[Eq. (60)J 

We collect the lower bounds to  PR [C >L] for  the two cases  in the following theorem. 

Theorem 3. 

On the completely connected DMC, the random variable of "static" computation C has  the 
following lower bound to  i t s  cumulative probability distribution function, PR [ C  >, L]: 

where 

Pmin = A min p [y./x 1 
j , k  

F G  t t ( l o g 2 L  t 1) 
0 Eq. (42)) 

and f(y.1 is a probability-like function of output symbol y .  interpreted a s  the probability of y .  
3 when channel J inputs a r e  assigned with probabilities {p,}, J' 1 < k < K. 

The function A(uO) and the pa rame te r  uo a r e  related parametr ical ly  to  the r a t e  R. 
lationship depends on whether the bound applies to  a l l  codes o r  to  codes of known and fixed 
composition. 

The re- 

(1) For a code of fixed composition Qo = (ql ,  . . . , qk) we have 
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( 2 )  For all codes w e  may choose 

r 1 

Yk( ao) 
R = max - for  - l < a  4 0  

0 k a  0 

Here y (a) is defined as k 

J 

[Eq. (38)l Y k ( O )  = A log2 p [yj/xk]i+u f(yj)-g . 
j=1 

An important observation can be drawn immediately f rom the bound of Eq. ( 6 3 ) .  For  very  
l a rge  F, corresponding to ve ry  l a rge  L, the bound is controlled almost entirelv bv the factor - * "  - 
FUo ( -ao)(~-~min)/~ 

2 . Thus, the bound behaves a s  (1/L) for  l a rge  L, so that the distribution 
is algebraic with l a rge  L. 
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, 
CHAPTER IV 

"RANDOM CODE" BOUND ON THE DISTRIBUTION OF COMPUTATION 

The previous chapter has  established the algebraic cha rac t e r  of the distribution of "static" 

computation. 
averaged over the ensemble of all t r e e  codes. 
exists whose distribution of "static" computation is bounded by a multiple of the average. 

gefher, the r e su l t s  of this chapter and of the preceding chapter de-limit the tail behavior of the 
distribution of computation. 

In this  chapter, w e  shall  obtain an overbound t o  the distribution of computation 

By so doing, we show that a l a rge  number of codes 

To- 

Chapter V w i l l  interpret and r e l a t e  the resul t  of these two chapters.  

A. RANDOM VARIABLE OF COMPUTATION 

The approach w e  use t o  bound the ensemble average of the distribution of computation re- 
quires  that we overbound the random variable of "static" computation. 
Chapter 11 is sufficient to  allow a bound on this random variable.  

guments of that chapter. 

The discussion of 
We repeat the pertinent a r -  

"Static" computation associated with the qth incorrect subset is defined LS the number of 
forward o r  backward "looks" required by the decoder in the incorrect  subset associated with 

the qth node of the co r rec t  path. 

and of nodes on paths disjoint f rom that portion of the co r rec t  path which extends beyond (1, 0, 9). 

A par t icular  node of this type is labeled (m,  s, q) to indicate that it is in the qth incorrect  subset, 
is at  "penetration" s, that is, is connected t o  ( 1 , 0 ,  q) through s branches,  and is mth in o rde r  

among the M ( s )  nodes at penetration s .  

below. 

This subset consists of the qth correct  node, labeled (1, 0,  q), 

The number of nodes at penetration s, M ( s ) ,  is defined 

M(0) = 1 

M ( s )  = (b  - 1) bS-' for  s > 1 . 1%. (1) I 

The qth c o r r e c t  node, o r  the reference node (1,0, q) is said t o  be at penetration ze ro  in the q 
incorrect  subs et .  

th 

A "path metric" d(m, s,  q) on node (m, s, q) h a s  been defined. If e is the generic symbol 

represent ing the path terminating on node (m, s ,  q), then the path metr ic  on this path of n = q + s 
branches is defined a s  follows: 

are the hth digits (of P digits) on the rth branches of 5 andVn, the received rh'  Vrh where 8 

sequence of n branches.t  The function I(erh' vrh) is defined by 

where f (v  

symbol v 

vrh = y . ,  we have 

) is a probability-like function, interpreted as the probability of channel output 

when channel inputs a r e  assigned with probabilities {p,}, 1 < k <  K. 
r h  

r h  That is, when 

J 

t The subscript n on subsequences of the transmitted or received sequences, namely Gn, Vn, indicates their length 
in branches from the origin. The subscripts r, or s indicate their length from the reference node (l,O,q). 
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Late r  in this chapter, we will find that f (y . )  is equal to  a probability appearing in the "random 

code" argument. 
J 

With this path metr ic ,  the Fano decoder sea rches  paths in the t r e e  code trying to find a path 

which tends to increase in path metr ic .  A path whose path 

me t r i c  tends to c r o s s  an increasing sequence of c r i t e r i a  wi l l  with high probability be the co r rec t  

path. 
ward ITlookslT f rom nodes in the t r ee .  W e  a r e  concerned with a subset of the total computation 

th  
ever  performed, which consists of the number of computations eventually performed in the q 
incorrect  subset. Since the machine computation depends on increments in the path metr ic ,  w e  

may choose to l e t  the value of the metr ic ,  d ( l ,  0, q), on the f i r s t  node of this subset, (1, 0, q), lie 

between T o  = 0 and T I  = to, that is ,  we may a s sume  that 0 < d(1, 0 ,  q) \< to. 
We found in Chapter I1 that the computation in the qth incorrect  subset depends on the min- 

imum value of the  path metr ic  a t  o r  following the reference node (1, 0, q) and on the t ra jector ies  
of the individual incorrect  paths. 
and le t  TD be the threshold just below D. 

(m,  s, q) by disregarding the history of the path preceding this node, looking only at  the value of 
the me t r i c  d(m, s ,  q) on this particular node. If d(m, s ,  q) is in a favorable position, w e  include 

node (m, s ,  q) in our computation count. A s  discussed in Chapter 11, d(m,  s ,  q) is in a favorable 

position i f  d(m, s, q)  3 TD. 
many a s  ( b  t 1) computations on node (m, s, q) with each such threshold T 
the machine never does any computation on (m, s, q) with T 

A set  of c r i t e r i a  T .  = i t is defined. 
0 

A s  the machine sea rches  for  the co r rec t  path i t  must perform a number of forward o r  back- 

Let D be the co r rec t  path minimum at  or following ( I ,  0, q), 
We overbound computation on a particular node 

In particular,  if d(m, s, q) >/ Tk >/ T,,, then the machine may do a s  

If T k  > d(m, s ,  4). 
- 

k' 

k' 
Before we define a random variable which overbounds the random variable of "static" com- 

Let d(m, s )  be the change in d(m, s, q) f r o m  
Then, i f  s now rep resen t s  the s 

putation, we further consider the me t r i c  d(m, s, 9).  

the value of the me t r i c  on the reference node, d(1, 0, 4).  
branches if the qth incorrect subset preceding the node (m,  s ,  q),  and if V r ep resen t s  the co r -  
responding portion of the received sequence, w e  have 

S 

d(m, s )  & d(m, s ,  q) - d(1, 0, q) 

S I  

= I ( e ,  Vs) - SIR k [I(Brh, vrh) - R ]  
r= l  h = l  

(69) 

where I(erh,  vrh) is defined by Eq. (68). 
To = 0 and T I  = t 
value for  each node (m, s, q) the computation required on nodes {(m, s, q)}  is increased, because 
these nodes may be examined with a l a rge r  number of thresholds.  
D is not changed.) Now, i f  we decrease by an equal amount the value of the path me t r i c  on each 
co r rec t  node following the reference node, we fu r the r  i nc rease  the computation on nodes {(m, s, q)}. 
If we let  iir , Vr , be  the ro branches of the t ransmit ted and received sequences following the 

r e fe rence  node, and define d ( i r  , Vr 

d(1, 0, q t r ), the value of the me t r i c  on ( q  + r )th c o r r e c t  node, we have 

Then, s ince we have assumed that d(1, 0 ,  q) l ies  between 
If d(m, s ,  q) is replaced with this l a r g e r  we have that d(m,  s, q) < d(m, s) t to. 

0' 

(The co r rec t  path minimum 

0 0  

a s  the change in the  value of the me t r i c  f rom d(l ,O,  q) to  
0 0  

0 0 
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0 1  
r 

(70)  - = I(Ur , v 1 - r o l R &  2 [1(urh, vrh) - R ]  . 
r=l  h = l  0 ro 

We note that d(1, 0, q) > O  s o  that d(1, 0, q + ro) > d(U, , Vr 1. 

d(Xr ,", ) computation on the incorrect  nodes {(m, s, q)} is increased. 

an overbound to  the random variable of "static" computation. 

If d(1, 0,  q + ro) is replaced with 
0 0  

W e  a r e  now prepared to  
0 0  

Using d(m, s)  t to f o r  d(m, s ,  q)  and d(Gr , Vr ) for d( 1, 0, q t ro), ro > 0, we r a i s e  the value 
0 0  

of the metr ic  on incorrect  nodes and lower the value of the me t r i c  on co r rec t  nodes following the 
reference node. Thus, we overbound the computation on incorrect nodes. Equivalently, we over-  

bound "static" computation. 

computations on node (m,  s, q) with threshold Tk if  d(m, s )  + t o  >/ Tk >/TDl where D' is the co r rec t  
path minimum with the me t r i c  d(G 

d(m, s )  t to < Tk. 
T D l ,  the machine may do a s  many a s  (b t i) N computations on node (m, s, 4); N is a random 
variable.  
ric on node (m, s, q),  d(m, s )  t to, and the lower bound to  the value of the me t r i c  on nodes of the 
co r rec t  path d(Zr , Cr ) is had with the random variable z .  

d(m, s )  t to >/Ti (that is, d(m, s )  >'Ti-1 since T .  = i t ) and i f  d(Ur , vr ) < Titi for  some ro >, 1. 

If these conditions a r e  not satisfied z .  This type of random variable is called a char-  

acter is t ic  function. Then, 

Now, a s  discussed above, the machine may do a s  many a s  (b  + 1) - 

- 1. N o  computation is required on (m, s, q) with T k  if r ' v r  
0 0  

Therefore,  if  t he re  a r e  N thresholds between d(m, s )  + to and T D l ,  including 

A convenient representation for N in  terms of the upper bound to  the value of the met-  

(m) .  We define z .  (m) = 1 if 
1, 1, s 

- 0 0  

0 0  
1 0  

(m) = 0. 
1, s 

( 0  otherwise . 
A little reflection indicates that 

the number of thresholds between 

m 

d(m, s) t t and T D l .  Therefore ,  
0 

(b + 1) z .  (4 
1, s 

i= -m 

is an overbound to  the computation on node (m, s, 4 ) .  If this  quantity is summed over  all  nodes 

the dh incorrect  subset,  that is ,  for  1 \< m < M ( s ) ,  0 < s, we have an overbound t o  the random 
variable  of "static" computation C in the qth incorrect subset.  Hence, - m M ( s )  

C <  C C { z .  (m) t z-i,s(m)} 
1, s 

i = O  s=O m = l  

where  M ( s )  is given by Eq. (1) and the i = 0 term is repeated twice. 

in 
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We are now prepared to overbound the distribution of computation using a "random code" 

argument. 

B. MOMENTS O F  COMPUTATION 

Although a lower bound to  the distribution of computation PR [C >, L ]  was found by consider- 
ing an appropriately chosen subset of the s e t  of events leading t o  L o r  more  computations, if we 

a r e  to overbound this distribution, we must consider every event which may lead to L or more  
computations. 

and t o  include each event which might contribute to  computation. 

We have overbounded the random variable of computation to  simplify the analysis 

The technique which we shall  employ to  overbound the distribution is to bound the moments 
of computation and use a generalized form of Chebysheff's Inequality. 

Lemma 1 .  (Chebysheff's Inequality) 

If C is a positive random variable, then 

- 
where Cp is the pth moment of C. 

Proof.  

where p(c) is the probability that the random variable C assumes  value c. Q. E.  D. 

The following two examples indicate the "tightnesst1 that might be expected with Chebysheff's 

Ine qu a1 it y . 
Example 1:- Let C assume values 0, co with probabilities 1 - a, a, respectively, then 

- 
C p = a c :  and P R [ C 2 L ] < a ( $ ) P  . 

For L = c the bound is exact. 
0' 

Example 2:- Let C >/ 1 be a continuous random variable with density p(C) = A/(Ca) where 

a > I and A = a - I. Then, for  p < (Y - I 

A s  p approaches (Y - 1, the moment (hence the bound) becomes indefinitely large.  
the behavior of the tail  a s  a function of L more  closely approximates the t r u e  tail  behavior 

However, 

1/L" -I. 

Judging from Example 2 and the fact that the distribution of computation is algebraic, we 

should expect that the application of Lemma 1 will lead to  a bound which degenerates rapidly a s  

the tail  behavior of the bound approaches that of the t rue  distribution. 
appear in our  results. 

This phenomenon wi l l  

Moments of computation cannot, as a rule,  be computed directly f o r  any a rb i t r a ry  code. 

We can, however, compute these moments over the ensemble of all possible t r e e  codes, and 
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deduce that at least  one code has moments l e s s  than the ensemble average. The ensemble of 

codes is generated by assigning probabilities to  the codes in such a way that each digit ( there  
a r e  P per t r ee  branch) is statist ically independent and identically distributed and i s  assigned 

with probabilities {p,}, that is, channel digit x occurs on a branch in a code with probability 

pk. 
Eq. (64). 

proof). 

k 
Note that we have deliberately chosen the probability assignment used to compute f(y.1, 

J 

A s  the las t  topic in this section, we introduce Minkowski's Inequality ( see  the Appendix for 

Lemma 2. (Minkowski's Inequality) 

Let {w }, l <  h <  H be a se t  of positive random variables.  Then h 

[pi wr]p< h = l  c"(Whpyp , p 2 l  (74) 

Using this inequality on Eq. (72) ,  the upper bound to  the random variable of computation, we 

have as a bound on the moments the following: 

(75) + c c  -1, s 

where M(s )  is defined by Eq. (1) and we use  the fact that  z .  (m)  3 0. 
1, 

sibility because of the number of c r o s s  t e r m s  which occur. 
problem to  that of computing moments of computation on incorrect paths at  the same length 

with the same threshold, namely, 
expanded as follows: 

Evaluating the moments without using Minkowski's Inequality seems  to be a practical  impos- 

With this inequality we reduce the 

z .  ( m o p .  If p is an integer, the la t ter  t e r m  may be 
M ( 4  

m = l  l ~ s  ( 

/ m l = l  m = l  
P 

\ m = i  ' 

where the t e r m s  in the expansion a r e  expectations of a composite characterist ic function or 

probabilities. 
attention to  integer p. 

Since an expansion of this type does not apply to  fractional p, we shall l imit  our 

In following sections, the f i r s t  t e r m  in Eq. (75) will be overbounded. Since the f i r s t  and 

second t e r m s  differ only in the sign of the index i, we shall find that the bound on the f i rs t  t e r m  

can be applied with minor modification to the second t e r m  of Eq. (75). 

C. PRELIMINARY COUNTING ARGUMENTS 

The two t e r m s  in Eq. (75) differ in the sign of the index i. This section will deal primarily 

with the first t e rm,  but the discussion here  may also be applied directly to  the second t e rm.  
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We are considering the t e r m  

The pth moment t e r m  has been expanded in Eq. ( 7 6 )  for integer p, the only case  considered. 

P M ( s )  M ( s )  
= 1 , . . . ,  1 z(m,),  . .  . , z ( m  ) . ( 7 8 )  

P 
m = I  m =I 

(MF) z(m) 

1 P 
m =  1 

The subscripts i, s have been dropped fo r  the remainder of this section. 

the case p = 4 a r e  equal since zn(m) = z(m) = 1 o r  0 and the ordering of character is t ic  functions 
in the product does not affect the value of the product. 
a r e  equal, since the indices ( m i , .  . . , m ) a r e  dummy variables.  
plicity of a particular t e rm.  

{ei, 02,. . . , e  }. 
z(m,) ,  . . . , z(m ) = z ( e , ) ,  . . . , z ( e t ) ,  all p-tuples with the se t  { e 1 , .  . , , €3 } a s  distinct elements 
have corresponding t e r m s  which a r e  equal. 
number is independent of the particular elements in the se t  of t distinct elements. 

In Eq. (78) ,  the t e r m s  corresponding to  ( m l ,  m2. m3, m ) = (1, 20, 4, IO) and (4, 1, IO, 1) f o r  4 

This suggests that many t e r m s  in Eq. ( 7 8 )  

Let us now consider the multi- 
P 

Assume that the p-tuple of indices ( m  m2, . . . , m ) contains t < p distinct elements 
P 

(Each corresponds to  a particular incorrect path of s branches.)  Since t 

P t 
Let W(t, p) be the number of such p-tuples. This 

We bound 

W(t, p). 
W(t, p) may b e  viewed a s  the number of ways of placing one ball in each of p distinguishable 

cells w h e r e  the balls a r e  of t different colors and each color must appear at least  once. The 

number of such collections of p balls is l e s s  than the number of collections one would have if 
we include the situations where one o r  more  colors do not appear.  This l a r g e r  number is the 

number of ways of placing t different elements in each of p distinguishable cells,  or tP. 

fore ,  W(t, p) < tP. 

There-  

To underbound W(t, p), we now establish that W(t, p) >,t W(t, p - 1). Consider W(t, p - I ) ,  

the number of ways (p  - 1) balls of t different colors may be placed in ( p  - 1) cells. 

extending the collection by placing one additional ball with one of the t colors in a pth cell .  
new collection contains t W(t, p - 1) i tems. 
of W(t, p) i tems because one color appears at least  twice and every other color at least  once, 

establishing the desired bound. 
W(t, t )  = t! we have W(t, p) >, tP-tt! 

Consider 
This 

It must contain fewer i tems than does the collection 

Iterating this lower bound (p - t )  t imes and observing that 
The two bounds a r e  summarized in the following lemma.  

Lemma 3. 

The number W ( t ,  p) of different p-tuples ( m l ,  . , . , m ) generated from the set  of t distinct 
P 

elements {e1 ,  02,. . . , et}, each element appearing at least  once has  the following bounds: 

G e-ttP\< W(t, p) \< tP . 
Proof. 

W e  use the fact that 19 

( 7 9 )  
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The second and final counting argument anticipates r e su l t s  to  be obtained in the next section. 
F i r s t ,  however, let  u s  rewri te  Eq. (78)  in t e r m s  of W(t, p).  

\ m = i  / t = l  all s e t s  of t 
distinct elements 
{e1, e2, . . . , et} 

The upper l imit  on t indicates that the number of elements in a p-tuple ( m i ,  m2, . . . , m ) cannot 
exceed either p or M ( s ) ,  the number of values of each index. In constructing the s e t s  of t dis-  

tinct elements {e1, e2,  . . . , et}, we draw each e i  from a set of M ( s )  i tems.  They correspond to  

nodes at  penetration s in the incorrect subset and are otherwise labeled a s  (ea, s ) ,  1 ,< a,< t .  

penetration s in the incorrect subset. These t paths a r e  composed of a number of branches 
which is l e s s  than or  equal t o  t s ,  since some paths may have branches in common. 

where the paths involved a r e  checked.) The next section wi l l  show that z ( e , ) ,  . . . , ~((3,) may be 
bounded in t e r m s  of the number of branches on the paths {e1, . . . , 8 }. 
two s e t s  of t different paths with the s a m e  number of branches will have the s a m e  bound. 

now proceed t o  count the number of s e t s  {e1, . . . , et} with an equal number of branches. 

(of length s) in the t r ee .  
The number of such ones equals the number of branches on these t paths. 
of ones on branches at length r f rom the reference node and define CU by 5 

P 

The t e r m s  z(f3,) z ( e 2 ) ,  . . . , z ( e t )  in Eq. (80) a r e  probabilities defined on t distinct paths a t  

(See Fig. 15 

That being the case,  any t 
W e  

The paths {e1, e2, . . . , 8 } may be visualized by placing a check next t o  each of these paths t 
Above every branch on a path ending with a check place a 1 ( s e e  Fig. 15).  

Let a r  be the number 

(a,, . . . , a r ,  . . . , a s )  

1 

1 

1 J  
1 

I 
I 1  J 

1 

1 

1 
1 J  

1 J  

' J  

1 

1 

1 , 

1 

I 
L J 

1 

1 

Fig. 15. Topology of tree paths. 
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S 

r= l  
In terms of z, the number of branches on the t paths {el,. . . , 8  } equals a P 
N t ( a )  be the number of s e t s  of t distinct paths {el,. . . , et} which contain a branches. 
following lemma bounds N t ( a ) .  

Z a r .  Let 

The 
t 

Lemma 4. 
t-2 2a1R N t ( a ) <  ( t  - I)! ( S  t 1) 

S 
where a = C a . a ranges between s,< a ,< st .  r' r = l  

Proof. 

The proof is by construction. W e  f i r s t  show that N t ( a )  \< ( t  - I ) !  st-'2@lR for s >, 1. Con- 

A second path connecting with the f i rs t ,  but 
s ide r  placing the f i rs t  of the t paths into the incorrect subset of the t r e e  (containing M ( s )  < bS 

paths). 
having d1 separate branches may assume any one of bdl positions since i ts  point of connection 

to  the f i r s t  path is fixed by i ts  length dl .  A third path with d2 branches distinct f rom the f i r s t  

two may connect to  either path and terminate in one of b positions, that is, it can assume no 

more  than 2b 

be connected to any one of them and may terminate in any one of b 

situated in no more than ( t  - 1) b 
distinct f rom the f i rs t ,  that the third path has d2 branches distinct f rom the f i rs t  and the second, 
etc., the number of arrangements of the t paths cannot exceed (t  - l)! b" where a = 

s t di + d2 t.. . tdt - l ,  the number of branches on these paths. All that remains is to determine 

the number of ways that values may be assigned to dl ,  d2, . . . , dt-2. 
given a and dl, . . . , dt-2.) Since each number d. represents  a portion of a path, 1 < di < s ,  val- 

ues may be assigned to  d,, d2, . . . , dt-2 in no more than s 
t-2 a 1R ments of t paths containing a branches cannot exceed ( t  - I ) !  s b . Observing that b = 2 , 

we have the desired result  for  s >, 1. 
and the number of branches on all paths cannot exceed s t .  Now, when s = 0, the bound on N t ( a )  

is zero.  W e  cannot let this bound be zero since M(o)  = 1, and w e  must include the s = 0 t e rm.  

Therefore,  replace s by ( s  + 1). Q. E. D. 

S It may assume no more  than b positions. 

d2  

d2 places.  The tth path having dt-l branches distinct f rom the first t - 1 paths may 
dt-l  positions; hence, can be 

Thus, given that the second path has dl branches dt-1 places. 

(Note that dt-l is fixed 

ways. Hence, the number of arrange-  t-2 

W.e also have s 4 a ,< s t  since one path contains s branches 

A s  mentioned above, the resul ts  of the following section show that z ( e i ) ,  . . . , ~ ( 0 , )  may be 

1, s overbounded in t e rms  of a .  
counting arguments introduced here  to  bound Eq. (76 ) .  

Let this bound be Q. ( a ) .  We terminate  this section by using the 

where W(t, p) and N t ( a )  a r e  bounded by Lemmas 3 and 4, respectively.  
number of values a cannot exceed s t .  

F r o m  Lemma 4, the 
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D. PROBABILITY TERM 

The purpose of this section is t o  overbound the probability z. (e1), . . . , zi, s(€lt) and show 
1, s 

that this bound depends on the t r e e  paths el, . . . , 8 only through a ,  the number of branches t 
which they contain. W e  call  this bound Q. ( a ) .  

1, s 
Before w e  proceed, it is useful to repeat the definition of the random variable z .  (ea). 

1, s 
F r o m  Eq. (71) we have 

1 i f  d(ea,  s) > Ti-1 and d(Gro. Fro)< Tit, 

fo r  some ro > 1 I z. (ea) = 
1, s 

\ O  otherwise (71) 

The expectation of a product of character is t ic  functions such a s  z. (e1). . . , z.  
1, s 1, s 

(e,) is the 

joint probability of the events on which each characterist ic function has  value one. 

have that z .  

>Ti-1, d(U, , V, ) >Ti t i  for  r 
0 0  

of a s e t  of intersections.  
intersections.  Therefore,  we have 

Thus, we 

(e1), . . . , z. 
1, s 1, s (0,) is the probability that d ( e l ,  s) >'Ti-1, d ( e 2 ,  s )  >/Ti-1,. . . , det, s) 

This is the probability of the union (on ro) = 1 or 2 o r  3 o r . .  . . 
0 

This may b e  overbounded by the sum of the probabilities of the various 

Let u s  reduce Eq. (83)  t o  a more  manageable form. We introduce two l emmas  t o  aid in this  

task.  The f i r s t  is a probabilistic statement and the second is a fo rm of the Chernov Inequality. 

Lemma 5. 

Let {w }, 1 < h,< H be  a set of random variables and {W,}, 1 < h <  H a se t  of constants. h 
Then, 

P R  [w1 < w i a  w2 a W 2 9 . .  . > wH< wHl 

where  uh > O  for  the inequality wh >/Wh and u < 0 for  the opposite inequality. h 

Proof. 

The  equality follows immediately. The inequality follows since the second event is implied 

by the first. 

Lemma 6. 

Let w be a random variable and W some constant. Then, 
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Proof. 

Q. E. D. 

Equation (83) is overbounded with the aid of Lemmas 5 and 6. W e  use Lemma 5 with 

H = t t 1, u > / O  for  16 a,< t and u au < 0 .  Then, t t l  - 0 a 

Z .  ( e l ) ,  . . . , Z .  (et) \< 2 
1, s 1, s 

(86) 
r = I  

0 

Any optimization now or l a t e r  of the pa rame te r s  u 
Therefore ,  we l e t  ua = 1/(1 t t ) ,  1 ,< a,< t,  since this  selection leads to meaningful resul ts .  
Recognizing that T .  = + i to, and remembering that d(0,, s )  = I(Sa, Vs) - sPR, d(Gr , Tr ) = 

I(T$ , V r  ) - r PR from Eq. (69) and (70), where sa is the se t  of s branches preceding (ea, s ) ,  

we fur ther  reduce Eq. (86). 

whereas t is a variable.)  

1 \< a <  t, is too difficult to be rewarding. a' 

0 0  

0 
0 0  

(It should be remembered that to is the separation between c r i t e r i a  

00 
-u r PR I t t  a=l  

X C 2 O 0  2 

r =1 
0 

where t r e e  paths Ga, 14 a,< t,  a r e  of length s. 
ea  is a t r e e  path of s branches preceding (ea, s ) . ]  

choices of parameters t o  follow a r e  justified by the end resul t .  
needed: 

[Note that ea indicates the node (ea, s ) ,  whereas 

The various bounding techniques and 

- 

Now focus attention on the expectation in Eq. (87). 
The following lemma will be 

Lemma 7 .  (Holder's Inequality) 

Let {w,}, 16 h ,< €1, be a set  of positive random variables  and let  {v,}. 1 < h < H, be a s e t  
of positive numbers satisfying 

H 
E - = I  1 , 

'h h = l  

Then, 

h = l  h= 1 



Proof. (See the Appendix) 

The expectation taken in Eq. (87) is over the ensemble of co r rec t  and incorrect  sequences 

and received sequences. Let V be a received sequence which includes 7 and 7 , that is, 7 

contains m o r e  than ro or  s branches. We may visualize the average in Eq. (87) a s  consisting 
of two successive averages,  the f i r s t  taken over the co r rec t  and incorrect  sequences with the 

received sequence fixed (indicated with 1 V), the second average taken over the received 
sequence V (indicated with -V). 
t ically independent by construction of the "random code" ensemble. 

r O  
S 

With V fixed, correct and incorrect  sequences a r e  s ta t is-  

This  implies that 

IT 

where the averages a r e  conditioned on V. 

v. 
be  considered a s  an average on V. 
have for the expectation in Eq. (871, 

The average in Eq. (87) is the average of Eq. (88) over 
- We overbound the average in Eq. (87) using Lemma 7, where the average of that lemma should 

W e  have H = 2 and w e  le t  v 1  = (1  t t)/ t ,  v z  = 1 t t. Then, we 

Here the average is f i rs t  ca r r i ed  out over the ensemble of codes with the received sequence fixed 
and then over  the received sequence. 

ing and bounding these two t e rms .  
F r o m  Eq. (69), we have 

Final arguments in this section a r e  concerned with evaluat- 

- a where v rh, erh a r e  the hth digits on the rth branch of vs, 8 a respectively, each of s branches.  

An equivalent statement applies [ f rom Eq. (70)] when za is replaced by the co r rec t  path Ur  . 
0 

Over the ensemble of codes, digits on correct and incorrect  paths are statist ically independ- 

ent and identically distributed with probability assignment {p,}. 

i n  Eq. (89) by observing that I(Ur ,Vr  ) is a sum of r 0 P statist ically independent random variables 

each of which assumes values 

We evaluate the second factor 

0 0  
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Conditioned upon V, each of these r 1 random variables a s sumes  value 
0 

with probability 

when the corresponding received digit is y . .  
output symbol y .  when input symbols a r e  assigned probabilities {p }. 
Eq. (891, we have 

We reca l l  that f (y . )  is the probability of channel 
J J 

For the second factor in J k 

where 

Before evaluating the f i r s t  factor in Eq. (891, le t  u s  observe that several  of the t paths 

{ e 1 , .  . . , 0 } at penetration s may have branches in common. 
section w e  identified branches on the paths {e1 ,  . . . , e t }  by placing a 1 above each ( s e e  Fig.  15).  

We then defined ar a s  the number of branches at  length r, that is, the number of 1's on branches 
at length r.  

paths. Let bn be the number of terminal paths containing the nth of the (Y branches at length r, 
16 n,< (Y . Since the total number of terminal  paths is t, we have 

We recal l  that in the previous t 

Since a r  < t, a branch at length r may belong to  more  than one of the t terminal  

r 

(Y r c b n = t  . (95) 
n= 1 

n (The dependence of bn  on r is implicit.) Call this nth branch at  length r 9," and le t  'prh be the 

hth digit (of P digits) on this branch. Then, in Eq. (89) we have 

46 



n Over the ensemble of codes, the t r e e  digits ‘prh a r e  statist ically independent and identically 
distributed and drawn with probabilities {p,}. 

subset, it is statist ically independent of the corresponding transmitted digit and of the c o r r e -  

sponding received digit vrh. 
independent of one another a s  a r e  the digits in each set. 

ability f (y . ) ,  given by Eq. (64). 
metr ic .  

n .  Since ‘prh is a digit on a branch in the incorrect  

CY 1 Therefore,  sets of digits (vrh, ‘pTh,. . . , ‘p,:) a r e  statist ically 
Digit vrh a s sumes  value y .  with prob- 

J 
This is the s a m e  function f(y.1 appearing in the definitions of the 

J J 
The conditional expectation in the first term in  Eq. (98) becomes: 

But the digits vrh a r e  statist ically independent; hence, the first t e r m  in Eq. (89) becomes, with 
the aid of Eq. (98), the following: 

( 1 +t ) /t P t/( 1 t t  ) r K  q ( l + t )  CY 

= n LjFl f(yj) n [ pk [‘ 1 ] (99) 
r=l n = i  k = l  

where we recognize that the random variables i n  the square brackets  of Eq. (98) a r e  statist ically 

dependent. 
The  above probability is not yet in usable form. A s  the f i rs t  of two s teps  directed at putting 

i t  in usable fo rm we use Holder’s Inequality (Lemma 7)  on Eq. (99) where we identify wh with 

and we let v h  = t/6,. W e  note that 

CY H r 

so that the v satisfy the necessary constraint. Then, h 
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In the second s tep  we define 

and observe that t e r m s  in Eq. (100) can be rewrit ten as follows: 

where 

1 t t - 6 n  

6n 
P =  

We note that P <  t since 14 d n <  ar \< t.  

Eq. (102) may be overbounded by replacing R 

N e x t ,  we deduce f rom the  following lemma that t R  >, + R for P \< t so  that -R \< -Rt and P t P 
t’  with R P 

Lemma 8. 

R 

Proof. (See the Appendix.) 

Replacing R with Rt in Eq. (102) and inserting this resu l t  into the inequality of Eq. ( loo ) ,  we 

a s  defined above is a monotone decreasing function of P for P > O .  
P 

P 
have the following final bound: 

S 

where cy = C 

Eq. (95). 

cyT. is the number of branches on the s e t  of paths { e 1 , .  . . , et} and we have Used 
r = l  

Combining Eqs. (93) and (94) in Eq. (89) we have the following: 

where kt(u0) and Rt a r e  given by Eqs.  (95) and (101), respectively.  

theorem: 

Our  las t  step, which is to u s e  Eq. (105) in Eq. (87) ,  is stated formally in the following 

48 

(105)  



Theorem 4. 

The probability zi, s(81), . . . , z .  (et) is bounded by the following, where a is the number 
1, s 

of branches on the t r e e  paths of length s ,  {e1,. . . , et}: 

sPt 
~ 

x 2l+t  

where uo'-< 0, 

and 

(We shall  discuss  the convergence of the sum in Eq. (106) later.) 

This is the resul t  at which this  section h a s  been directed. We have obtained a bound on the 

probability t e r m  which depends on the paths {e1,. . . , et} only through a ,  the number of branches 

which they contain. 
corresponding t o  negative values of i differs from the bound above only in the sign of i and in 

the value of uo (which we shall  call ul). 

previous section t o  obtain the complete bound on the moments of "static" computation. 

An identical proof (which we do not include) shows that the probability t e r m  

The following section combines the r e su l t s  of th is  section with the counting arguments of the 

E.  BOUND ON MOMENTS 

The purpose of this section is t o  combine the r e su l t s  of the two previous sections,  thereby 

bounding the moments of computation. 
F r o m  Eq. (82) we have 

M(s) P min[M(s), P I  SP 

W(t,p) 2 N t ( a )  Qi, s ( a )  . [Eq. (8211 

a =s 
( c zi, s ( m $  \< c 

m =  1 t = l  

The multiplicities W(t, p) and N ( a )  a r e  bounded by Lemmas 3 and 4 which a r e  repeated he re  in 
abbreviated form. 

t 

Lemma 3. 

[Eq. (7911 
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Lemma 4. 

[Eq. (8111 t-2 2 ~ P R  N ( C Y )  < ( t  - I)! ( s  + 1) t 

The lower bound to the function W(t, p) was introduced in order  to establish that the bound in 
Eq. (82)  must grow approximately a s  tP. 

by p. 
for  most values of s .  

To further overbound Eq. (82) we overbound min [ M ( s ) ,  P]  

Since M ( s )  = (b  - 1) bS-l for  s >/ 1, it grows rapidly with s and the minimum will equal p 

These observations lead to the following bound on Eq. (82): 

We a r e  now prepared t o  use the resul ts  of the preceding section, Theorem 4, namely, 

This bound and that given above yield 

\ m = i  / t = l  

In the previous section (Lemma 8 )  we discussed R and said that i t  was monotone decreasing 

then Rt >,Rp for  t < p and each t e r m  in the s u m  on cy is 
-sP(Rt-R) 

. 

t 
with increasing t .  

less than 1 and each i s  overbounded by 2 

If w e  choose R < R 

(We note that this l a rges t  t e r m  occurs  a t  

C Y -  

0' 
U 

s which corresponds to the case  where the paths e l ,  . . . , e  a r e  one and the same.)  Then, t 

t -it (-+u t 1 (MF) z .  (m)) < tP2 +to(l+t-uo) 0 l + t  0 t! ( s  + l ) t - l  
1. s 

\ m = l  . / t = l  

W e  have yet to discuss  whether the sum on r above converges and i f  so, for what values of 
The semi-invariant moment generating function )I (u ) is given by t o  
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Using the following lemma, we find that pt(uo) < p (a  1. 
uOR - p (u ) > 0 then ooR - pt(uo) > 0 for t 

Thus, i f  there  exists a uo such that 
P O  

p. P O  
Lemma 9. 

Let w be  a positive random variable and 0 < v < n. Then 

( T ) U V <  ( , n ) l / n  . (1  10) 

Proof. (See the Appendix.) 

We must ascer ta in  whether t he re  exists a uo < 0 when R < R such uoR - p (u ) is positive. 
P P O  

If so, the sum on r in Eq. (109)  converges. The next lemma will aid us in our determination. 

Lemma 10. 

The function uoR - p (a ) where p (u ) is given by Eq. (94) is positive for u' < uo < 0 where 
P O  P O  

pP(u1)/d = R, and p ( a  )/u is monotone increasing in uo. 
P O  0 

Proof. (See the Appendix.) 

We deduce f rom the monotonicity of p (u )/ao that u' < -p/(1 t p).  Therefore, t he re  exis ts  
P O  

u1 < -p/(1 + p), uo > -+ such that ulR - p (u ) > 0 and aoR - p (a ) > 0 when R < R 
need these r e su l t s  soon. 

We shall  
P i  P O  P' 

In any further bounding of Eq. (109) we must consider the two polarities in i, namely i <  0, 

W e  bound Eq. (109)  over the two ranges of the index i, using the monotonicity in t / ( l  t t) i > O .  

(up), in Rt (down) and in pt(uo) (up) with increasing t. 

Theorem 5. 

F o r i  3 0 ,  R < R  a n d u  > u1 P' 0 

x 2  

-it (1 /2 tuo)  
by 

0 For i <  0, replace u by u1 and 2 
0 

+ito(Fp 1 +a1) 

2 

Proof. 

We note that \< ( t ) / ( l  + t) < (p ) / ( l  t p), using the -3wer bound for i 2 0  and tLe upper bound 

for  i <  0 .  

Theorem 5 is now employed t o  compute the sum of the two t e r m s  in Eq. (75).  

Theorem 6. 

T h e r e  exists uo, ai ,< 0 such that the following is bounded for R < R . P' 
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(112) 

Proof. 

The discussion following Lemma 10 indicates that for  R < R the re  exis ts  uo > -* and 
P 

u1 < - (p ) / ( l  t p) such that ooR - p (a ) > 0 and alR - p, ( u  ) > 0. These first two conditions 
and the l a s t  two conditions guarantee convergence of the i and r summations, respectively. 

P O  P I  

Q. E. D. 

W e  conclude our  discussion of the moments with the following theorem which summarizes  

the resul ts  of the las t  three sections. W e  recal l  the bound Eq. (75). 

Theorem 7. 

On the DMC, the pth moment of computation with the Fano Sequential Decoding Algorithm - 
is Cp, which is considered a s  an average over the ensemble of t r e e  codes, and is finite f o r  
R <  R where 

P 

- 
A bound to Cp is obtained by combining Eq. (75) with Theorem 6. 

F. COMPOSITE BOUND ON DISTRIBUTION 

Our concern for  the moments of computation was motivated e a r l i e r  by the statement that 
the moments may be used with a form of Chebysheff’s Inequality t o  bound the distribution of 
computation. We restate  Lemma 1. 
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Lemma 1. 

Let C be a positive random variable with moments Cp. 
- 

Then, 

CP P [ C b L ] <  - 
LP R 

Since the moments have been averaged over the ensemble of all  t r e e  codes, we have a bound 
on the distribution considered a s  an average over the ensemble of tree codes. Indicate this 

average with PR(C &L) .  - 
It has been shown above that Cp is finite for R < R 

of Cp from our  arguments since Cp has  been overbounded. 

consider only those moments, namely, f irst ,  second, . . . , pth, such that R < R 
fusion let  k indicate an arbi t rary o rde r  of moment and define p by R 

is monotone decreasing in increasing p). 

We cannot establish the exact behavior - P' - 
Therefore,  we shall  b e  content to  

To avoid con- 
(note that R 

P' 
6 R < R 

P+l  P P 
Therefore, moments of o rde r  k,< p converge and may 

be  used in bounding PR [C 3 L]. 

F/c - 1/2 c C2 
L 

Fig. 16. Bound on distribution. 

Given that moments of o rde r  k <  p are to be used in bounding the ensemble average of the 
distribution of computation, w e  ask for  that order of moment for  which the bound is smallest .  
If the kth o rde r  moment is used and L < (ek)'Ik, then the bound on the distribution is greater  

> l /k  
than one, s o  that one must be used a s  a bound. Since C increases  with k (Lemma 7), the 

bound on the distribution must b e o n e  for L < 
is used fo r  values L such that C /L 

curves occurs  a t  L = C /C (see Eig.  16). 

o rde r  moment is used until L = C /C 
In general, we use the kth o rde r  moment for C /C 

is s ta ted below ( see  Fig. 17) .  

Theorem 8. 

and c / L  fo r  L just g rea t e r  than E. This bound 
2 2  exceeds ?/L. The point of intersection of these two 

2 -  For values of L greater  than this value, the second- 

< L <  (Cktl)/Ck. 

3 2  at whichpoint the t h i r e d e r  moment is applied, etc. 
k k-1 The composite bound 

- 
Let C be the random variable of computation with moments Ck over the ensemble of t r e e  

P' codes, then, for k <  p, where R \< R < R 
P+ 1 

1 , L < C  

-- -- 
(Ck/Ck-*) < L < Ckt1/Ck . 
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Fig. 17. Composite bound on distribution. 

With probability equal t o  0.9 a code of r a t e  R chosen at  random f rom the ensemble of codes 

will have PR [C  > L ]  \< 10 P [C >, L]. Codes in the ensemble a r e  assigned probabilities in such 
a way that digits in the code a r e  statist ically independent and identically distributed with proba- 
bilit ies { pk}. 

R 

Proof. 

The bound on the average distribution has been discussed above, The second statement 
follows f rom Markov's Inequality ( a  variant of Chebysheff's Inequality), namely, i f  x is a pos- 
i t ive random variable 

P [ x < a X ] = i - P  [ x > a F ] < 1 - -  1 
R R a 

where x is a distribution of computation and a = 10. 

The composite bound is the lower envelope of the bounds corresponding t o  the individual 
moments.  

is the largest  order moment which is guaranteed to  converge. 

Rpt1 6 R < R 

For l a rge  L (the distribution parameter)  the distribution behaves as L-'where p 

That is ,  p is such that 

P' 
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CHAPTER V 
INTERPRETATION OF RESULTS AND CONCLUSIONS 

This report  is motivated by a concern for  the computational requirements  of the Fano 
Sequential Decoding Algorithm a s  reflected in the probability of a buffer overflow. 

ability plays a central  role  in the design of the Fano decoder for  two reasons :  

This prob- 

(a )  The probability of an overflow is much la rger  than the probability of an 
undetected e r r o r  ( e r r o r s  without overflow); 

(b) When overflows occur a ser ious break in the decoding process  results.  

Our particular concern with the overflow event is to  determine i ts  sensitivity to the s torage 

capacity of the decoder,  to the decoder 's  speed of operation, and to  the signaling r a t e  of the 

source.  
l ems .  

computation C. 

tation, P 
P 

We have had to approach these questions indirectly to avoid difficult analytical prob- 

Our approach has been to  consider a random variable  of computation known a s  l lstaticll  

We have over- and underbounded the probability distribution of "static" compu- 
[C h L ] ,  and have shown that it behaves as  L-@,  (Y > 0, for la rge  L. The bounds to  R 

[C > L ]  lead to bounds on C Y .  

We shal l  descr ibe an experiment performed at Lincoln Laboratory and indicate the co r re -  
R 

lation between this experiment and the analytical bounds on a .  
about the t rue  tail behavior of PR [C >,L], i.e., the behavior of this probability for la rge  L. We 
shal l  interpret  the conjectured exponent a in terms of established bounds on exponents of prob- 

abilities of e r r o r ,  these exponents being derived from coding theorems.  

This will lead to a conjecture 

In this chapter, we also establish a heuristic connection between the probability of buffer 

overflow and the distribution of l lstaticll  computation PR [C >/ L]. 
dicate the sensitivities to buffer s i ze ,  machine speed, and signaling r a t e  which a r e  displayed 

by the overflow probability. 

F rom this connection we in- 

Finally, we introduce and discuss  severa l  r e sea rch  problems. 
We begin this chapter with a discussion of the t a i l  behavior of PR [C >/ L]. 

A. COMPUTATION EXPONENT 

In Chapter 111, a lower bound applying to  all codes was found for PR [C >,L]. A lower bound 
for  codes of fixed composition was a l so  found. We shal l  be concerned he re  only with the general  
lower bound. 

In Chapter IV, an overbound to  PR [C >/ L ]  was found using the "random codel' technique. It 
was shown that a large fraction of the set of all tree codes have a distribution function PR IC > L ]  
which is less than some fixed multiple of the ensemble average of PR [C >,L].  

It was indicated by Example 2 of Chapter IV that the upper bound on PR [C >/ L]  of that chap- 
t e r  should be numerically weak. 
the s a m e  may be said for the lower bound. Example 2 did indicate, however, that the behavior of 

the upper bound in the distribution parameter  L should approximate the t rue  (ensemble average) 
tail  behavior. We a r e  thus motivated to consider the behavior of PR [ C  Z L ]  with L for  la rge  L. 
To study this behavior, we introduce a function e(R) called the computation exponent. 

Because of the lower bounding technique described in Chapter 111, 
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Since PR [C >, L ]  behaves a s  L-O for  large L, the exponent cy is related to the computation ex- 
ponent e ( R )  by cy = e(R)/R. Multiplication by the r a t e  R normalizes cy so  that e (R)  is a bounded 

function. 

We now use  the definition of Eq. (114) on Theorems 3 and 8 to obtain upper and lower bounds, 
respectively, t o  e(R).  
a function of the code. 

We note that e(R) is an implicit function of the code, s ince PR [C >,L] is 

Theorem 9. 

On the completely connected DMC, a code cannot be found with a computation exponent ex- 
ceeding F(R) where 

S(R) 4 (-a 0 1 (R - Imin) (115)  

and uo is the solution to 

Here,  yk(u) is given by 

and 

Theorem 10. 

On the general DMC the re  exist codes with computation exponents g rea t e r  than o r  equal to  

- e (R)  where 

f o r R  < R < R  p = 1 , 2 , 3  , . . . ,  and 
P t l  P' 

R = - - I  A 1  p Og2 pk p [yj/xkl f / ( i+P)  I"p . [Eq. (1 04) 1 
J K  

P 
j = I  

The  probabilities {p,} a r e  the probabilities assigned to  l e t t e r s  in codes in the "random code" 

argument. 
f (yj) .  The path metric on the path terminated by node (m, s ,  q) of the qth incorrect  subset, 

d(m, s, q), is defined a s  by 

They also appear implicitly in the definition of the path me t r i c  through the function 
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Here En, n = q + s ,  represents  the given t r e e  path; V 
the received sequence; and urh, v 

Theorems 9 and 10  delimit the tail  behavior of PR [C >,L] a s  measured with the computation 
exponent e(R);  e(R) < G(R) for a l l  codes on the completely connected DMC, and the re  exist codes 

on the general  DMC such that e(R) >,e(R).  
e(R) and E(R), with the signaling r a t e  R. 

represents  the corresponding section of n 
a r e  the hth digits on the rth branches of Un, Vn, respectively. rh  

We now consider the behavior of the two bounds, 

F i r s t  consider G(R). 
We recal l  from the discussion of Chapter I11 that y (a )/a 

0‘ 

W e  wish to show that it is a monotone decreasing function of increasing 
R. 
of a 

yk(ao)/ao is continuous in u 

is monotone decreasing in increasing a 

creasing function of R. 
derivative in u 
max [yk(ao)/ao], that is, a point at  which the index which achieves the maximum is changing 

from k = k1 to k = kz. 

is a monotone increasing function k o  o 
This implies that R = max [yk(oo)/go] is also monotone increasing in ao. Moreover, 

k 
a s  is R = max [y,(ao)/ao]. If we can show that F(R) = (-ao) (R - I 

we will have established that e (R)  is a continuous de- 

) min k 0 

0’ 
The monotonicity of (-ao) (R - Imin) is established by considering i ts  

The derivative is taken at  a value of a. which is not a transit ion point of 
0’ 

k 

1 (-a ) ( R - I  . ) = -  duo 0 min duo 

= - [ Y L i b O )  - Imin 1 
where 

J 1+O0 - OO [ y j / x k j  

j= 1 [yj’xki] f (yj)  log2 f(yj)  
-U 
0 

1 +ao 
j=i ’ P [Yj/xki] f (y j )  

We may underbound each of the logz {p [y./xkl]/f(y.)}, appearing in Eq. (1191, by the smallest  J J 
such t e r m .  

has a negative f i r s t  derivative at  values of a. which a r e  not transit ion points. 

(R - Imin) is continuous in g o ,  we have that e ( R )  is continuous and monotone decreasing in R. 
At a0 = -1, R = 0 and Z(R) = - I  

yk(0) = 01 and F(R) = 0. 

By definition, this must exceed Imin. Therefore,  y k  (a ) >/ Imin and (-ao) (R - Imin) 
1 0  

Since (-ao) 

3 0 .  min At a. = 0, R = l im max [ y  (a )/a ] = max y k ( 0 )  [since 
k k o  o u -0 k 

0 
These  resul ts  a r e  summarized in the following lemma.  

Lemma 12. 

The computation exponent upper bound F(R) is continuous and monotone decreasing in in- 
c reas ing  R. 

tation exponent bound C(R) is sketched in  Fig. 18 for  a typical channel and a typical probability 
assignment {pk}. 

It dec reases  f r o m  S(R) = - 1  . min at R = 0 to E(R) = 0 at  R = max y’ (0). The compu- k k 

One may show that the r a t e  at  which E ( R )  = 0, namely max yi,(O),  may exceed channel ca- 
k 

pacity. On the contrary,  if the assignment {pk} that achieves channel capacity Co is used then 
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R 

Fig. 18. Computation exponent upper Fig. 19. Computation exponent lower 
bound e(R). bound g(R). 

max y L ( 0 )  = Co. 

tion between channel inputs and outputs. 

inputs and outputs; then, 

We recall that channel capacity C o  is defined as the maximum mutual informa- 
k 

Let I(x, y )  be the mutual information between channel 

It has been shown2' that the {p,} which maximizes  I (x ,y)  is such that 

with equality when pk # 0. 

in the definition of the path met r ic ,  then max ~ $ 0 )  = Co and the r a t e  a t  which P(R) = 0 is channel 

capacity. 

A s  given by Theorem 10, g(R) = pR for 

Therefore ,  i f  this se t  {p,} is used in  the definition of f (y . ) ,  that is, 
J 

k 

W e  sha l l  now consider the behavior of e (R)  with R. 
R 4 R < R p = 1 , 2 , .  . . . Fix p. Then, for  R \< R < R e (R)  increases  with R on a l ine 
of slope p passing through the origin. 

t r a r i l y  c lose  to, but less than R 

creasing sequence for increasing p, whereas  the R f o r m  a decreasing sequence. 
establish that the sketch of Fig.  19 is accurate .  

P+l P' P+i P' - 
The full curve e ( R )  is sketched in Fig. 19.  For R arbi-  

e (R)  = pRp. We now show that the points pR form an  in- 

This  will 
P' - P 

P 

From Lemma 8, R p >/ 0, is monotone decreasing in  increasing p .  We show that pR is 
8 '  -PRp P 

monotone increasing in p by showing that 2 is monotone decreasing in p for  a fixed se t  of 

{Pk)* 

Lemma 9 is sufficient to  establish the monotonicity of 2-PRp. We repeat  this l emma here.  
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Lemma 9. 

Let w be a positive random variable and let 0 < v \< r). Then, 

(7)ib < (w'7)1/r) 

Therefore,  if we apply this lemma to the s u m  over k fo r  each j in Eq. (122), we find that in- 

creasing p dec reases  Z-PRp or increases  pR 
P' 

We now show that on the completely connected DMC, pR has a well-defined, nonzero limit 
P 

a s  p + -. For  l a rge  p, 

and 

Therefore ,  on the completely connected DMC, as p becomes indefinitely large,  pR approaches 
P 

j= 1 

This implies that R 
channel is not completely connected, the l imit  of pR 

Rp - Co > 0. These resul ts  a r e  summarized in the following lemma. 

= pR /p approaches zero  on the completely connected DMC. When the 
P P 

a s  p + may be infinite. This implies that 
P t 

Lemma 13. 

The computation exponent lower bound e (R)  is a set  of straight l ines of increasing slope, 

e (R)  = pR for R 

pR increase with decreasing R to  the following l imits  
,< R < R p = 1,2, 3 , .  . . . On the completely connected DMC the points 

P+i  P' - 

P P 

K 
PklOgzPIYj/xkl 

l im  R = o , l im p~ = logz zk=' 
P 

P-- j =1 

P 

P P-m 

t t When the channel is not completely connected, lim R = Co where Co may be s t r ic t ly  positive, 
P-= co'> 0.  

The largest  r a t e  for which e (R)  is nonzero is Ri. 

A s  an  example of the computation exponent bounds, we show in Fig. 2 0  the two exponents 

For R 3 R1, e(R) is zero.  It will be 

obvious f rom a l a t e r  discussion that R1 < Co, channel capacity. 

E ( R )  and e (R)  for the binary symmetr ic  channel (BSC) with transit ion probability po = 0.01. We 
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select  pk = i, k = 1 , 2 .  

this channel and the given assignment {pk}, we have P ( R )  = (p/ l  + p) [R 
R = R and p a s sumes  all values g rea t e r  than ze ro  (not just  the integers).  

Since this assignment achieves channel capacity, F(R)  = 0 a t  R = Co. 

At R = 0,  E(R) = 

F o r  

+ logz (1/2po)], where 
P 

P 
-Imin = log2 (1/2P0). 

In the next section we correlate  the analytical results with an experiment. 

B. AN EXPERIMENTAL RESULT 

A computer simulation' of the Fano algorithm was run recently a t  Lincoln Laboratory under 

the direction of K. L. Jordan who has made data from this experiment available to  the author. 

These data represent  slightly more  than one million decoded digits on the BSC with po = 0.01 and 
have been used to  compute an experimental  distribution of computation (see Fig. 21). 

tation variable measured in this simulation will be discussed shortly.  

differs somewhat f rom "static" computation. 

The compu- 

It suffices to s a y  that i t  

In the experiment,  a convolutional t r e e  code of the type described in Chapter I1 with b = 2 

was used. - -s -1 
distance between the two t r e e  branches at the first node of the t r ee .  
maximize the minimum Hamming distance between the four codewords of two branches.  
other subgenerators were chosen in this way. 
was simulated with a random number generator and a s  the decoder operated,  i t  was assumed to  

have a n  infinite buffer. 

In the generator g = ( _ g i , _ g 2 , .  . . , g ), S = 60; g was chosen to maximize the Hamming 

Given gi ,  g2 is chosen to  

Several  
The BSC The remainder  were chosen at random. 

The computation variable recorded by the computer is best  defined with the aid of two im- 
aginary pointers.  
furthest  penetration into the t r e e  made by the decoder. 

t r e e  indicates the depth of the node presently being examined by the decoder.  
e i ther  lies on o r  behind the extreme pointer. 

in the t r e e ,  the computer program reco rds  one computation. 
t r e m e  pointer remains fixed and the program records the number of operations required before 
the sea rch  pointer r e tu rns  to the extreme pointer and the two move ahead. The data f rom the 

simulation a r e  reduced and the computer program prints out the number of t imes  the computation 
cxceeds 2 for k = 0,1,2,. . . . In the particular run used by the author the signaling r a t e  R was 

W e  may visualize a pointer "extreme" below the t r e e  code indicating the 
Another pointer, "search," below the 

The sea rch  pointer 

Every t ime the two pointers move ahead together 
If a s ea rch  is required,  the ex- 

k 

bit per  channel use.  The largest  number of computations in this run was less than 256 and 
g r e a t e r  than 128 and it was observed that the search pointer never drifted back more  than 45 

branches from the extreme pointer. 
Although the computation recorded by the program is not "static" computation, w e  shal l  

argue later that it is a small  multiple of "static" computation. 

the ta i l  behavior of the experimental  distribution, we are justified in computing the computation 

exponent for  the experimental  distribution and comparing this exponent to the bounds of Fig. 20. 

The experimental  point is shown in Fig. 20. 

corded but l a rge  computations were so infrequent that the data were not considered reliable and 
were  not used. 

Since this  multiple does not affect 

Other computer runs at r a t e s  R = + ,  4 were r e -  

In the next section, we conjecture about the true.value of the computation exponent. 

C. A CONJECTURE 

We a r e  led to  conjecture a f o r m  f o r  the "true" computation exponent by consideration of the 

experimental  resul t  of the las t  section and the derivation of the "random code" bound on the 
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distribution of "static" computation. 
attention to integral  moments of computation for  analytical reasons.  

tion, e(R) has the shape of Fig. 19. 

exponent has the form e:k (R) = pR 
that this  is an exponent which may be achieved, that is, that codes can be found with this expo- 
nent. 
The conjectured "random code" computation exponent and this  point differ by only 5 percent at 

R = $ for the BSC example.) Finally, we suggest that e'k(R) cannot be exceeded, that is, that no 
code exis ts  with a computation exponent which exceeds e* (R). 
r ized below. 

In the discussion of this bound in Chapter IV, we limited 

A s  a resul t  of this l imita- 

W e  now suggest that the t rue  Ilrandom codeI1 computation 

for  all p >/ 0 (not just  integer p). We suggest when R = R 
P P 

(This is partially substantiated by the experimental  point discussed in the las t  section. 

These suggestions a r e  summa- 

Conjecture 

The computation exponent e:? (R) ,  

e:k(R) z pR R = R  for  p > O  (125) P '  P 

cannot be exceeded by any code used with the path me t r i c  of Eq. (114) and codes exist which 
achieve this  computation exponent. 

The conjectured exponent e:? (R) is a monotone decreasing function of R. This may be de- 
duced f r o m  the earlier discussion of the exponent e(R).  

with the value of g(R) at  R = 0. 

is given by Eq. (120). 

The value of e:: (R) a t  R = 0 is identical 

The exponent e:: (R) is zero for  p = 0 o r  R = I(x,  y) where I(x, y)  

The conjectured exponent of this section is interpreted in the following section in t e r m s  of 
l ist  decoding" exponents and the sphere -packing" exponent. 

D. INTERPRETATION OF COMPUTATION EXPONENT 

The conjectured computation exponent e* (R) has a s imple interpretation in t e r m s  of the 

"list  decoding exponent," that i s ,  the exponent of the "random codel' bound on the probability of 

e r r o r  with "list decoding." 21-23 

"List  decoding" is s imi l a r  t o  maximum a poster ior i  decoding. 
2nR equally likely codewords is transmitted over  the DMC. 

We as sume  that one of - 
M 

in channel symbols and R is the signaling rate .  

a l is t  of the k a poster ior i  most probable codewords given the received channel sequence. 

the transmitted codeword is not in this l is t  of k codewords, a n  e r r o r  is said to have occurred.  
With "list  decoding" the probability of e r r o r  is reduced f rom the probability of e r r o r  with maxi- 
mum a posteriori  decoding, k = 1, by accepting some  ambiguity in the transmitted message.  

The probability of e r r o r  with l ist  decoding has been overbounded using a "random code" 
The probability of e r r o r  is averaged over  the ensemble of codes by assigning to  

Here  n is the code block length 

At the receiving terminal ,  the decoder makes 
If - 

- 

argument. 

each code a probability, computed a s  i f  each le t ter  in the code were chosen independently with 

the assignment {p,}, the assignment of Chapter IV. The ensemble average of the probability of 
e r r o r  with l is t  size k,  P ( E ) ,  k = 1 , 2 ,  3,  .,. . , has the following bound k 

where 

Ek(R) = max [pRp-pR]  . 
O < p < k  
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The exponent Ek(R) is the upper envelope of the straight l ines pR - pR for a l l  0 \< p 4 k ( see  
Fig. 22) .  Fo r  R 4 RC, the point of tangency of the straight l ine of 

P 
At R = I(x, y) ,  Ek(R) = 0. 

.. 

slope -k to the curve Em(R)  4 l im  Ek(R), the exponent Ek(R) increases  along a straight line of 
k-.o 

slope -k to kRk. 

assignment {pk}. If E,(R) i s  maximized on {p,}, one finds that the resulting exponent equals 
the "sphere-packing" exp0nent.2~ This la t ter  exponent is an exponentt on a lower bound to the 

probability of e r r o r  which applies to every block decoding procedure, l is t  decoding or otherwise, 
and a s  such the "sphere-packing" exponent represents the largest  possible exponent on the prob- 
ability of e r r o r  with any block decoding procedure. It is a fundamental bound on exponents to the 

probability of e r r o r .  

The limitingexponent Em(R) ,  as well a s  Ek(R),  depends on the probability 

We now return to the conjectured computation exponent e:: (R). A simple construction on 

Em(R)  yields e::: (R) (see Fig. 23) .  

the height of the intersection with the exponent axis. 
for some p by definition of Em(R) ,  where p is  the magnitude of the slope of the tangent line. 

has an interpretation in t e r m s  of the "list  decoding exponent" and the lfsphere-packingll exponent, 
t he re  is no obvious connection between them. Since the la t ter  two exponents a r e  fundamental in 

a sense,  the fact that the conjectured exponent is interpreted from them suggests that this expo- 

nent may a l so  be fundamental. 
the case.  

From R a straight line tangent t o  Em(R)  is drawn; e:: (R) is 

This  straight line has equation pR - pR P 

Although the conjectured computation exponent [which equals e (R)  for R = R p = 1,2,. . . ] 
P' 

Unfortunately, there is no other evidence to suggest that this is 

E. OVERFLOW QUESTION 

In this section, we establish a heurist ic connection between the probability distribution of 
"static" computation, which w e  have studied extensively, and the probability of buffer overflow. 
Our discussion will indicate the sensitivity of the overflow probability to  signaling r a t e  R to 

machine speed, to buffer s ize  and to the number of digits decoded before overflow. W e  begin by 

summarizing the discussion of Chapter I1 on the overflow event. 
We as sume  that the Fano decoder operates  with the buffer shown in Fig. 24. Branches a r r i v e  

f rom the channel and a r e  inserted at  the left-hand end of the buffer. 

buffer at the r a t e  at which they a r r ive  and a r e  released when they reach  the right-hand side of 
the buffer. 

digits. 

They move through the 

Below each branch, space is provided to  record  tentative decisions on the source 
This  portion of the buffer is empty t o  the left of the pointer "search." 

A s  the decoder proceeds,  it inser ts  or erases  tentative source  decisions recorded below the 
t r e e  branches.  
indicates the received t r e e  branch presently being examined by the machine. 

t r e m e "  indicates the latest  received t r e e  branch examined t o  date. 

pointer have never been compared to branches in the t r e e  code. 

These insertions or e r a s u r e s  occur at  the sea rch  pointer because this pointer 
The pointer "ex- 

Branches to the left of this 

The sea rch  and extreme pointers hover near the left-hand side of the buffer when the decoder 

has l i t t le trouble decoding. Occasionally, however, an interval of high channel noise forces a 
l a rge  amount of computation and the two pointers drift  to the f a r  right end of the buffer. When 

this happens, there  is a high probability that an erroneous digit will be released into the safety 
zone. Since the decoder is unable to change digits in the safety zone (the corresponding received 

tThe exponent i s  defined as l im [-log2P(e)l/n. 
n+ m 
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branches have been discarded) ,  the decoder is forced to  consider extending on incorrect  paths. 
This is v e r y  difficult, so  that thereaf ter  both pointers tend to hover nea r  the f a r  end of the buffer, 

releasing erroneous digits. Although overflow can be detected,  it is a ser ious disturbance and 
must be combated either with the use  of a feedback channel o r  periodic resynchronization o r  by 

some other means.  

system pa rame te r s .  

We will attempt to  es t imate  the sensit ivity of the overflow probability to the 

Now that we understand the meaning of overflow, we r e tu rn  t o  a consideration of "static" 

computation. 

of a buffer overflow on or before the t ime at  which the Nth source decision en te r s  the safety zone. 

Gh co r rec t  node is defined as the computation eventually performed with the Fano algorithm on 
nodes of the qth incorrect  subset when the correct  message is ultimately decoded. We now argue 

that whatever computation is performed in this incorrect subset is performed on nodes which a r e  

close t o  the reference node (1, 0, q) and that almost all  of these computations a r e  performed 
together in t ime  r a the r  than a substantial  fraction now and a comparable fraction l a t e r .  We a r e  

in effect going to  argue that "static1f computation is v e r y  closely related to  "dynamic" computa- 

tion. 

Our intention is to  lay the groundwork for  a discussion of PBF(N) ,  the probability 

Consider the qth node on the correct  path (1, 0 , q ) .  "Static" computation associated with 

The argument is as follows: 

(1) For a properly chosen code and for  a reasonable range of signaling r a t e s ,  
R < R1, computation in an incorrect  subset is due almost completely to  an 
interval of high channel noise and a concomitant dip in the correct  path. 
We argue that this  is t r u e  by noting that if the co r rec t  path does not dip, 
the decoder will never be searching far f rom the co r rec t  path. 

(2) Let W be the width of a dip in the  correct path (the separation between 
points A and B in Fig. 25). Let the magnitude of the dip remain fixed. 
Then it can be shown that a dip of width W occurs  with a probability 
which dec reases  exponentially fast  in W. Therefore ,  this width will 
typically be  small .  

( 3 )  If the qth co r rec t  node (1, 0,  q) is in the region of a dip in the co r rec t  
path ( s e e  Fig. 25), then paths in the associated incorrect  subset may be 
above the minimum of the dip over  the region A t o  B of Fig. 25, but 
beyond B they will typically fall rapidly below the dip minimum never 
to  be extended. 

(4) It is conceivable that a dip f a r  ahead of a particular correct  node will 
fo rce  a r e tu rn  t o  the incorrect subset associated with this node. The 
probability of such an event is very small as is seen from the following 
observations:  Typically, the correct path will r i s e  f rom a par t icular  

I .  

Fig. 25. Typical correct path trajectory. E 
I 
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cor rec t  node [see (1, 0 ,  9') of Fig.  251. 
is t o  force a re turn to  node (1,0,  q l ) ,  this dip will have to  equal or ex- 
ceed the rise which previously occurred in the co r rec t  path. If such a 
dip occurs far in the future, i t  will typically be very l a rge  in magnitude. 
Such an event is very unlikely. It occurs  with a probability which de- 
c reases  exponentially in the magnitude of the dip25 

probability it will be due to  a dip in the co r rec t  path which is close to  
the qth co r rec t  node. 
all  the computation performed in the qth incorrect subset is usually per-  
formed on nodes close to the qth co r rec t  node. The behavior of the prob- 
abilities mentioned in ( 2 )  and (4) can be established with a "random code11 
argument. 

If a l a t e r  dip in the co r rec t  path 

(5) Thus,  if computation is required in the qth incorrect subset ,  with high 

Since the width of the dip will typically be sma l l ,  

Statement 5 summar izes  the argument which suggests that "static" computation is related 
to  "dynamic" computation. 

s e t s ,  which are located within the region of a co r rec t  path dip (C to  B in Fig. 25 )  will be com- 
parable so that the total  "dynamic" computation due to  the dip will be a sma l l  multiple, s ay  

Navgl 
and lfextremell  indicated in the buffer description may also be applied to the path t ra jector ies  of 

Fig. 25. 
typically remain the re  until the running threshold has  been reduced sufficiently to pass  the co r rec t  

path. 
data taken from the Lincoln Laboratory simulation. 
of Chapter I11 that the computation increases  exponentially with the width of the co r rec t  path dip 

so that for  a dip which causes  a l a rge  computation, the extreme pointer of Fig. 24 will drift  back 
by an amount x while the extreme and sea rch  pointers will have a separation proportional to  

log x. 

or before the time at which the Nth source decision reaches the safety zone. It certainly exceeds 

PBF(l), that is, 

W e  note that the "static11 computations in the adjacent incorrect  sub- 

of the I1static" computation in one incorrect subset.  We also note the pointers l lsearch" 

A s  a resul t  of a co r rec t  path dip, the extreme pointer will move out to  point B and will 

It is this argument which justif ies our comparing the computation exponent bounds to  the 
We may  also observe from the discussion 

We a r e  now prepared to discuss  the overflow probability. 
The buffer overflow probability PBF(N)  is defined as the probability that overflow occur s  on 

F i r s t ,  we shal l  consider PBF(l) in o r d e r  t o  bring out the dependence of PBF(N)  on signaling r a t e  
R, machine speed, and buffer s ize .  

PBF(l) is the probability that the buffer overflows on or before the t ime  at  which the f i rs t  
source decision reaches the safety zone. 
branch en te r s  the buffer, overflow can occur i f  computation in the f i r s t  incorrect  subset and ad- 
jacent subsets  is sufficient to force the sea rch  pointer f rom the left- to  the right-hand s ide  of the 
buffer. 

the correct  path so that if  the total  "static" computation over  t hese  N 
ceeds Lo, where Lo is the number of computations needed t o  fo rce  the s e a r c h  pointer to the far 

end of the buffer, then overflow occurs .  
number of branches which may be stored in the buffer ,  then it takes  BTch seconds to  f i l l  the 
buffer. 

computation requires y seconds.  Then i f  L = BTch/ym o r  m o r e  computations a r e  required 
in the f i r s t  N If the computation in these sub- 

avg 
se t s  is comparable, and i f  the "static" computation in each one of them exceeds BTch/Navgym. 

overflow occurs .  Therefore ,  

Since the buffer is empty before the f i r s t  received 

La rge  Computation in these subsets  (let t he re  be N of them) is due to  a local  dip in 
incorrect  subsets  ex- 

avg 
avg 

If Tch is the t ime  between branch a r r iva l s  and B is the 

We neglect the distance between the s e a r c h  and ex t r eme  pointers and a s sume  that each 

m 0 
incorrect subsets ,  then overflow will resul t .  



We may deduce f rom the fact that PR [C >,L] behaves as L[-e(R)l/R, for l a rge  L, where e(R) 
is the computation exponent, that PBF(N) is relatively insensitive to a change in B, the s torage 

capacity of the buffer, o r  to a change in ym, the time fo r  one machine computation. PBF(N) is 
ve ry  sensit ive to signaling ra te ,  however, because the exponent [e(R)]/R increases  rapidly with 

a decrease  in ra te .  

the sensitivity of PBF(N)  to N. 
It should be c l ea r  that PBF(N) will increase rapidly to one with N,  the number of source  

decisions released into the safety zone, if the average number of decoding operations required 
by the Fano algorithm exceeds the number of computations per  second which the decoder can 
perform. 

putation required by the algorithm is very  large i f  R >/ R1. 

to one with N for R >/R1. 

may operate with infrequent overflows. It has been shown that the average computation is smal l  

i f  R < 0.9 R1, being seve ra l  computations per decoded digit. Thus,  i f  the machine speed is such 

that s eve ra l  t imes  this number of computations per second can be performed, then we do not ex- 
pect PBF(N) to grow rapidly with N. In fact, one may reasonably argue that decreasing the sig- 

naling r a t e  rapidly dec reases  the probability of frequent intervals of large lldynamic'f computa- 
tion, and this implies that with a reduction in signaling r a t e  the machine decodes easily and both 

the sea rch  and ex t reme pointers hover near  the left-hand end of the buffer. 
a r e  infrequent, we expect only one burst of computation at  a t ime,  which is to say,  that bursts  

will be statist ically independent. 

These a r e  the sensitivities mentioned in Chapter 11. Let us now consider 

We find f rom inspection of the conjectured computation exponent that the average com- 

Therefore ,  PBF(N) must grow rapidly 

This then is an  upper limit to the r a t e  at  which the Fano algorithm 

If l a rge  computations 

PBF(N) then is  proportional to N and PBF(l), that is, 

when R <  0.9 R1, PBF(l) is small ,  and the machine speed exceeds by seve ra l  t imes  the speed 
required to  handle the average computation. 

While the statements of this  section a r e  strictly heuris t ic ,  there  is good reason  to believe 
Eq. (129) because of the experimental result  cited above. 

s ecu re  than that of Eq. (129). 

The statement of Eq. (130) is less 

At best ,  it may serve as a guideline. 

This completes the discussion of overflow probability. 

F. SOME RESEARCH PROBLEMS 

We conclude this chapter with a discussion of some  problems suggested by the resul ts  of 

this report .  We shall  discuss  these suggested problems in inverse,order  of importance. 

The distribution of "static" computation and the probability of buffer overlow were loosely 

connected in the previous section. 

Perhaps  a more  direct  connection is possible. 

It is unfortunate that the connection had to be heurist ic.  

If a direct ,  nonheuristic, approach to the probability of buffer overflow cannot be found, 
then the heurist ic approach of the last section should be improved by improving the bounds on 
the distribution of "static1' computation. In particular, there  is reason  to believe that a s t ronger  
lower bound argument than that presented in Chapter 111 may be found and that such a bound would 

not r equ i r e  the assumption that the DMC is completely connected. 
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A more important problem than the two suggested, concerns the choice of a path metr ic .  

The metr ic  assumed for this r epor t ,  Eq. (117), requires  exact knowledge of the channel t ransi-  

tion probabilities. The re  a r e  seve ra l  reasons fo r  not using a metr ic  of this type. 

(1) It may be too difficult to  measu re  the channel transit ion probabilities; 
( 2 )  The  channel may be t ime varying S O  that a metr ic  fo r  the poorest channel 

s ta te  may be necessary;  

(3) The channel transition probabilities may be known but they may be either 
so large in number o r  sufficiently difficult to compute in the decoder that 
some other metr ic  is desirable.  

Thus, t he re  is a need to consider the performance of the Fano Sequential Decoding algorithm 

with a variety of metr ics .  
computation exponent, an analytical treatment of the various me t r i c s  may be possible using the 
technique of Chapter 111. It is not expected that the "random code" argument will c a r r y  through 

for many different metr ics .  
the effect of a change in metr ic  on the Fano algorithm will be achieved through simulation. 

preliminary study of this type has been completed at  Lincoln L a b 0 r a t 0 r y . l ~  The behavior of the 
Fano algorithm appears  to be insensitive to  a variation in metr ic .  

If we choose to measu re  the performance of the algorithm with the 

It is more  reasonable to expect, however, that a fruitful study of 
A 

W e  come now to the most important problem a r e a  suggested by this r epor t ,  that of overflow. 

Since it occurs with a much l a r g e r  probability than do undetected decoding e r r o r s ,  it dese rves  
fur ther  examination. 

insensitive to buffer s i ze  and machine speed, but strongly dependent on signaling r a t e .  

suggests that a sizable decrease in PBF(N)  is obtainable only with a dec rease  in r a t e .  
applications, large signaling r a t e  is desired.  
rapidly with buffer s ize  and machine speed, then the decoder could operate  at a higher r a t e  with 
an equal overflow probability. 

the "static" computation for each channel noise sequence. 
quential Decoding there  exists some high channel noise sequence such that tTstatictl  computation 
is large and growing exponentially with the length of this interval of high channel noise. If the 

r a t e  of growth of Computation with such a channel noise sequence is reduced, then P B F ( N )  will 
dec rease  more  rapidly with buffer s i ze  and machine speed. 

In our  study of the overflow probability P B F ( N )  we have found that it is 
This 

For many 

Hence, i f  PBF(N)  could be made to  dec rease  more  

We a r e  motivated then to  consider ways of reducing the s i ze  of 

A s  mentioned in Chapter I11 for  Se- 

Conceivably, a reduction in the r a t e  of growth of computation with channel noise is possible 

If the r a t e  of growth of computation with a modified algorithm by modifying the Fano algorithm. 
r ema ins  exponential, then the modified algorithm should be expected to  be s imi l a r  in design and 

performance to the Fano algorithm. 

that the modified algorithm will r e semble  the Fano algorithm in any way. 
computation seems to be character is t ic  of this algorithm. 

If the r a t e  of growth realized is nonexponential, it is doubtful 
Exponential growth of 

If the r a t e  of growth of computation is to  be nonexponential, t he re  is some  question that the 
probability of e r r o r  can be made to dec rease  with the constraint  length of the code S as fast  a s  

2-SE(R), a s  it does for Sequential Decoding  algorithm^.^ A s  a ma t t e r  of fact ,  t he re  a r e  a number 
of decoding procedures for which the computation is bounded by a function which is algebraic in 
the constraint length or block length S, that is ,  which grows no f a s t e r  than Sp for some p >/ 0; 

but at the s a m e  time the e r r o r  probability dec reases  only as 2 -S1-EE(R), where E is some num- 

ber  s t r ic t ly  greater than zero.  3'9'10 There  seems to be a n  important sacrifice in e r r o r  prob- 
ability fo r  a reduction in computation. Since a s m a l l  e r r o r  probability can be realized with 
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small  cost, a trade-off of this type may be desirable. 
obtainable trade-off between computation and e r r o r  probability is limited by the channel and the 

signaling rate .  
tion and e r r o r  probability would be of great  conceptual, and ultimately, pract ical  interest .  

We are prompted to  suggest that the 

If such a trade-off exists,  the knowledge of the best  balance between computa- 

Note added in proof: In a recent  paper to  be published, I. Jacobs and E. Berlekamp through 

a direct  argument have underbounded the probability of a buffer overflow o r  an undetected e r r o r  
This  bound grows linearly with the number of information digits processed by the decoder and it 
has  as computation exponent that given by the conjecture of this  chapter. 

Also, H. Yudkin has  recently shown that the random code bound of Chapter 4 can be refined 

so that the lower bound t o  the computation exponent ag rees  with the conjectured exponent fo r  
r a t e s  l e s s  than Rcomp. 
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APPENDIX 
LEMMAS 

Lemma 2. (Minkowski‘s Inequality) 

Let {wh}, 1 ,< h < H be a set of positive random variables. Then, 

Proof. 

Holder’s inequality established below, will be used. Write 

s = w  + . . .  1 t W H  

and let  Sp = 2. Using Holder’s Inequality for two variates with v l  = p and v z  = p/(p - 1) we have 

H-.-- R -  
s p  = W h P <  (w,p) l / p  ( S p ) W P  . 

h = l  h=l 

Then, 

o r  

H 

h = l  h = l  
Q. E. D. 

Lemma 7. (Holder’s Inequality) 

Let {w,}, 1 < h < H be a se t  of positive random variables and let  {u,}, 1 < h < H be a se t  
of positive numbers  satisfying 

H 
1 

‘h 
2 - = I  

h = l  

Then, 

H 

h = l  h = i  

Proof. 

It suffices to  establish that 
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when ( l / v )  t (1/q) = 1 since this  inequality may be i terated t o  obtain the inequality of the lemma.  

Let the joint probability that a = a .  and b = b. be p. Then, 
1' 

- 
ab = piaibi . 

i 

Let e(t) = tl'v - ( 1 / v )  t for  t > 0. Then, 

> o  O < t < l  

e ( t )  = ( t  - 1 k 1 ) =  = o  t = l  Lo t > l  . 
Therefore ,  e ( t )  achieves a maximum at  t = 1 over the range t > 0. Hence, 

1 
7) 

e ( t k  e ( % )  = - . 

Let t = A/B and multiply by B where both A and B a r e  positive to  obtain the following 

A'/' Bi" < ? A  t - B  1 . 
7) 

Now, choose 

V p.a. p.b! 

C p.a.  C pib: 
A = 1 '  v ,  B = 1 '  

1 1  i 

Replacing A and B by the i r  values and summing on i, we a r r i v e  at the des i red  inequality, 

namely, 

Q. E. D. 

Lemma 8. 

As defined below, R is a monotone decreasing function of increasing p for  p >, 0.  P 

At p = 0 the numerator i s  zero.  

the numerator  is negative for 
I ts  derivative is pE" (p ) .  We show below that E"(P) < 0;  hence, 

P' >, 0 as is the derivative of R 
To show that E"(P) < 0 we shal l  demonstrate  that E(P) is a convex upward function. 



Holder’s Inequality for the two var ia te  case  will be used twice. 
above with 

We apply it t o  the inner sum 

(1 - A ) (  i + P 2 )  

1 1 /[ ( 1 - A  )( 1 +P 2)1 K 

PkP [Yj/xkl (2  
Applying Holder’s Inequality to  the double sum in the definition of E(P) with v 1  = 1 / A ,  v 2  = 1 / ( 1 - A )  

we have 

The inequality is strengthened if the exponents of p [y./x ] are replaced by 1/(1 t Pi). Then, 
J k  

E [AP1 t (1 - A )  P 2 I  >AE(P1) + (1 - A )  E(P2)  

which establ ishes  that E”(P) < 0. 

Lemma 9. 

Let w be a positive random variable  and 0 < v < 7. Then, 

(wv)l/v < ( w 9  - 1/77 . 

Proof. 

Let w = w. with probability pi‘ then, 
1 

Q. E. D. 

We have 
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= 7 ( w )  I" ( F  piQi lnQi) 
V 

where 

V W. 
1 Q. = ___ > / o  

c p.w. 
i l 1  

and 

piQi = 1 . 
i 

Using the standard inequality l n x  >, 1 - (1/x), the derivative is lower bounded by 

Q. E. D. 

Lemma 10. 

The function aoR - p (a  ) where p (a  ) is given by 
P O  P O  

J l t a o  

[k!l 

]Itp 

j = l  

is positive for  u t  < a < 0 where at is such that p ( d ) / d  = R, and p (a )/ao is monotone in- 
0 P P O  

creasing in a 
0' 

Proof. 

F o r  aoR - p ( a  ) t o  be positive we must  have R < p (a  )/ao since a. ,< 0. If p ( a  )/ao is 
p. O P O  P O  

monotone increasing in u 
t rue .  The derivative 

the desired resul t  is established. We shal l  now show that such is 
0' 

is positive if the numerator  is positive. 

show that i ts  derivative, u p"(a 1, is negative f o r  a ,< 0 o r  pl'(ao) 2 0. 

Let ajk = P iyj/xkl/f(yj)- Then, 

Since the numera tor  is ze ro  for  a = 0 it suff ices  to  
0 

O P  0 0 P 
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. also, 

If we let  

both of wilicli  arc  lltilterlll probabilities and le t  

K $ t u o  

k= ' 1 'kajk 
q .  J = K i tao  

In ajk 

Pkajk k = l  

then, we have 

which is positive because both t e r m s  a r e  variances. 

ing in increasing uo. 

Therefore,  p (u )/uo is monotone increas-  
P O  

Q. E. D. 
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